Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:53:25.389Z Has data issue: false hasContentIssue false

Systematic Investigation of the Superconducting Behavior in Aged PuCoGa5

Published online by Cambridge University Press:  26 February 2011

Frédéric Jutier
Affiliation:
[email protected], European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, Karlsruhe, D-76125, Germany
Eric Colineau
Affiliation:
[email protected], European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, Karlsruhe, D-76125, Germany
Jean-Christophe Griveau
Affiliation:
[email protected], European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, Karlsruhe, D-76125, Germany
Jean Rebizant
Affiliation:
[email protected], European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, Karlsruhe, D-76125, Germany
Franck Wastin
Affiliation:
[email protected], European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, Karlsruhe, D-76125, Germany
Get access

Abstract

In this work, we have undertaken to follow the evolution of the PuCoGa5 superconducting behavior as a function of the damages created by self-radiation effects induced from the Pu-decay. It is shown that the critical temperature is particularly sensitive with ageing. Ageing effects on fundamental parameters such as the lattice parameters of the PuCoGa5 and the electrical resistivity provide some new hints of the unconventional character of the superconductivity in this class of materials

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sarrao, J. L. et al., Nature 420 (2002) 297 Google Scholar
2. Wastin, F. et al., J. Phys. Condens. Mat. 15 (2003) S2279 Google Scholar
3. Bauer, E. D. et al., Phys. Rev. Lett. 93 (2004) 147005 Google Scholar
4. Shick, A. B., Janis, V. and Oppeneer, P., Phys. Rev. Lett. 94 (2005) 016401 Google Scholar
5. Curro, N. J. et al., Nature 434 (2005) 622 Google Scholar
6. Sakai, H. et al., J. Phys. Soc. Jpn. 74 (2005) 1710 Google Scholar
7. Thompson, J. D. et al., “Superconductivity in Actinide Materials “appeared in Recent Advances in Actinide Science, Eds. I., May, R., Alvares, N., Bryan, RSC Publishing(2006), 680, ISBN 0-85404-678-XGoogle Scholar
8. Giapintzakis, J. et al., Phys. Rev. B 50 (1994) 15967 Google Scholar
9. Rullier-Albenque, F. et al., Phys. Rev. Lett. 91 (2003) 047001 Google Scholar
10. Bang, Y. et al., Phys. Rev. B 70 (2004) 104512 Google Scholar
11. Kinchin, G. H., Pease, R. S., Rep. Prog. Phys. 18 (1955) 1 Google Scholar
12. de la Rubia, T. D. et al., Radiation Effects and Defects in Solids 148 (1999) 95 Google Scholar
13. Jutier, F. et al., Physica B 359–361 (2005) 1078 Google Scholar
14. Jutier, F. et al., “Influence of self-irradiation damages on the superconducting behaviour of plutonium-based compounds “appeared in Recent Advances in Actinide Science, Eds. I., May, R., Alvares, N., Bryan, RSC Publishing (2006), 743, ISBN 0-85404-678-XGoogle Scholar
15. Jutier, F. et al., J. Phys. Soc. Jpn. supplement 75 (2006) 47 Google Scholar
16. Fuger, J. and Matzke, Hj., “Self-radiation effects in the actinides and their compounds-Basic studies and practical implications” in Handbook on the Physics and Chemistry of the Actinides, Eds. Freeman, A. J. and Kettler, C., North Holland, Amsterdam, Vol.6 (1991), 641 and references therein.Google Scholar
17. Griveau, J. C. et al., Mater. Res. Soc. Symp. Proc. 893 (2006) 0893-JJ02-03.1Google Scholar
18. Normile, P. et al., Phys. Rev. B. 72 (2005) 184508 Google Scholar
19. Fluss, M. J. et al., J. Alloys Compd. 368 (2004) 62 Google Scholar
20. Bang, Y. et al., Physica B 378–380 (2006) 1025 Google Scholar