Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:42:50.649Z Has data issue: false hasContentIssue false

Synthesis, Structure, and Electrochemical Properties of Li4Ti5O12

Published online by Cambridge University Press:  26 February 2011

Chintalapalle V Ramana
Affiliation:
[email protected], University of Michigan, Geological Sciences, 1100 N. Univ. Ave., CC Little,, Ann Arbor, MI, 48109, United States, 7347635344, 7347634690
Satoshi Utsunomiya
Affiliation:
[email protected], University of Michigan, Geological Sciences, 1100 N. Univ. Ave., CC Little, Ann Arbor, MI, 48109, United States
Rodney C Ewing
Affiliation:
[email protected], University of Michigan, Geological Sciences, 1100 N. Univ. Ave., CC Little, Ann Arbor, MI, 48109, United States
Udo Becker
Affiliation:
[email protected], University of Michigan, Geological Sciences, 1100 N. Univ. Ave., CC Little, Ann Arbor, MI, 48109, United States
Karim Zaghib
Affiliation:
[email protected], Institut de Recherches d'Hydro-Québec, Chemical and Environmental Technologies, 1800 Boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1, Canada
Christian M Julien
Affiliation:
[email protected], Université Pierre et Marie Curie, Institut des Nano-Sciences de Paris, Campus Boucicaut, 140 rue de Lourmel, Paris, 75015, France
Get access

Abstract

Lithium titanium oxide (Li4Ti5O12) spinels are promising negative electrode materials for application in energy technology. In this work, we have synthesized Li4Ti5O12 and investigated its structure, electronic properties, and electrochemical features using several analytical spectroscopy and microscopy techniques. The equally spaced lattice fringes obtained using by the high-resolution transmission electron microscopy (HRTEM) along with electron diffraction reveal that the grown Li4Ti5O12 is well crystallized in the spinel structure without any indication of crystallographic defects such as dislocations or misfits. The electronic structure determination using high-resolution X-ray photoelectron spectroscopy (XPS) coupled with compositional studies using energy dispersive X-ray spectrometry (EDS) indicate excellent chemical quality of the Li4Ti5O12. Under the optimal synthetic condition, the sample delivers a discharge capacity of 161 mAh/g at C/12. The good cyclability of Li4Ti5O12 is attributed to the small expansion (δV≈1%) of the elementary unit-cell.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Julien, C.. NATO Sci. Ser. 3–85, 1 (2000).Google Scholar
2. Zaghib, K., Armand, M., and Gauthier, M., J. Electrochem. Soc. 145, 3135 (998).Google Scholar
3. Colbow, K. M., Dahn, J. R., and Haering, R. R., J. Power Sources 26, 397 (1989).Google Scholar
4. Rossen, E., Reimers, J. N., and Dahn, J. R., Solid State Ionics 62, 53 (1993).Google Scholar
5. Ohzuku, T. and Ueda, A., Solid State Ionics 69, 201 (1994).Google Scholar
6. Ohzuku, T., Ueda, A., and Yamamoto, N., J. Electrochem. Soc. 142, 1431 (1995).Google Scholar
7. Bach, S., Pereira-Ramos, J. P., and Baffier, N., J. Mater. Chem. 8, 251 (1998).Google Scholar
8. Bach, S., Pereira-Ramos, J. P., and Baffier, N., J. Power Sources 81–82, 273 (1999).Google Scholar
9. Jansen, A. N., Kahaian, A. J., Kepler, K. D., Nelson, P. A., Amine, K., Dees, D. W., Vissers, D. R., and Thackeray, M. M., J. Power Sources 81–82, 902 (1999).Google Scholar
10. Scharner, S., Weppner, W., and Schmid-Beurmann, P.. J. Electrochem. Soc. 146, 857 (1999).Google Scholar
11. Julien, C. M. and Zaghib, K., J. Power Sources 50, 411 (2004).Google Scholar
12. Julien, C. M., Massot, M., and Zaghib, K., J. Power Sources 136, 72 (2004).Google Scholar