Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:17:07.020Z Has data issue: false hasContentIssue false

Synthesis of ZnO2 Nanocrystals Produced by Hydrothermal Process

Published online by Cambridge University Press:  01 February 2011

R. Esparza*
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, Cuernavaca, Mor., 62251, MEXICO.
A. Aguilar
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, Cuernavaca, Mor., 62251, MEXICO.
A. Escobedo-Morales
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, Cuernavaca, Mor., 62251, MEXICO.
C. Patiño-Carachure
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, P.O. Box 52-B, Morelia, Mich., 58000, MEXICO.
U. Pal
Affiliation:
Instituto de Física, Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla, Pue., 72570, MEXICO.
G. Rosas
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, P.O. Box 52-B, Morelia, Mich., 58000, MEXICO.
R. Pérez
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, Cuernavaca, Mor., 62251, MEXICO.
*
* Corresponding author: [email protected]
Get access

Abstract

Zinc peroxide (ZnO2) nanocrystals were directly produced by hydrothermal process. The nanocrystals were synthesized using zinc acetate as precursor and hydrogen peroxide as oxidant agent. The ZnO2 powders were characterized by X-ray powder diffraction and transmission electron microscopy. The results of transmission electron microscopy indicated that the ZnO2powders consisted of nanocrystals with diameters below to 20 nm and a faceted morphology. High resolution electron microscopy observations have been used in order to the structural characterization. ZnO2 nanocrystals exhibit a well-crystallized structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gleiter, H., Acta Mater. 48, 1 (2000).Google Scholar
2. Philip, M., Rep. Prog. Phys. 64, 297 (2001).Google Scholar
3. Wang, Z.L., J. Mater. Chem. 15, 1021 (2005).Google Scholar
4. Beek, W.J.E., Wienk, M.M., Janssen, R.A.J., Adv. Funct. Mater. 16, 1112 (2006).Google Scholar
5. Konenkamp, R., Word, R.C., Godinez, M., Nano Lett. 5, 2005 (2005).Google Scholar
6. Rosenthal-Toib, L., Zohar, K., Alagem, M., Tsur, Y., Chem. Eng. J. 136, 425 (2008).Google Scholar
7. Chen, W., Lu, Y.H., Wang, M., Kroner, L., Paul, H., Fecht, H.-J., Bednarcik, J., Stahl, K., Zhang, Z.L., Wiedwald, U., Kaiser, U., Ziemann, P., Kikegawa, T., Wu, O.C.D., Jiang, J.Z., J. Phys. Chem. C 113, 1320 (2009).Google Scholar
8. Wang, C., Zhang, W.X., Qian, X.F., Zhang, X.M., Xie, Y., Qian, Y.T., Mater. Lett. 40, 255 (1999).Google Scholar
9. Sun, M., Hao, W., Wang, C., Wang, T., Chem. Phys. Lett. 443, 342 (2007).Google Scholar
10. Peulon, S., Lincot, D., Adv. Mater. 8, 166 (1996).Google Scholar
11. Tokumoto, M.S., Pulcinelli, S.H., Santilli, C.V., Briois, V., J. Phys. Chem. B 107, 568 (2003).Google Scholar
12. Liu, B., Zeng, H.C., J. Am. Chem. Soc. 125, 4430 (2002).Google Scholar
13. Gerstel, P., Hoffmann, R.C., Lipowsky, P., Jeurgens, L.P.H., Bill, J., Aldinger, F., Chem. Mater. 18, 179 (2006).Google Scholar
14. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W., Whelan, M.J., Electron Microscopy of Thin Crystals (Butterworth and Co., London, 1965).Google Scholar
15. Rentenberger, C., Waitz, T., Karnthaler, H.P., Scripta Materialia 51, 789 (2004).Google Scholar