Published online by Cambridge University Press: 25 February 2011
Vapor phase synthesis of titania particles by oxidation of titanium tetrachloride (TiCI4) was studied in an aerosol reactor between 1200 K and 1723 K. The effect of process variables (reactor residence time, temperature, reactant concentration) on powder size and phase characteristics was investigated using the differential mobility particle sizer, scanning electron microscopy and X-ray diffraction. The morphology of the particles remained unchanged under the process conditions investigated; titania particles were primarily anatase though the rutile weight fraction increased with increase in reactor temperature. The geometric number average diameter of the particles was between 0.13 µm and 0.35 [m and the geometric standard deviation of the particle size distribution was about 1.4. The average particle size increased with increasing temperature, TiCI4 concentration and residence time. The observed changes in the particle size distribution were compared with those predicted by solving the aerosol dynamic equation by a sectional method and accounting for coagulation and first order chemical reaction.