Published online by Cambridge University Press: 21 March 2011
Superparamagnetic magnesium ferrite, MgFe2O4, nanoparticles were synthesized under mild microwave hydrothermal (MH) conditions. Transmission electron microscopic studies showed that the average particle size of the ferrite obtained is ∼3 nm, with a narrow size distribution. Temperature dependent AC magnetic susceptibility measurements at 2 Oe showed characteristic feature of superparamagnetism with blocking temperature, TB, at 47 K. TB decreases with increasing DC magnetic field as evidenced by zero-field-cooled susceptibility studies at 50 and 500 Oe (TB = 38 and 27 K respectively). As a typical superparamagnetic behavior, the zero-field- cooled and the field-cooled magnetizations diverge below TB. Magnetic hysteresis behavior is observed below TB, with a high coercivity of 185 Oe at 12 K, and magnetic hysteresis behavior disappears when measured above TB. The results indicate that MH method is highly suitable for the synthesis of superparamagnetic ferrite nanoparticles of uniform size distribution.