Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:25:45.555Z Has data issue: false hasContentIssue false

Synthesis of Spatially Controlled Nanostructures by Ion Implantation in V-Grooves on (001) Si Surfaces

Published online by Cambridge University Press:  17 March 2011

Torsten Müller
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung PO-BOX 510119, 01314 Dresden, Germany
Karl-Heinz Heinig
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung PO-BOX 510119, 01314 Dresden, Germany
Bernd Schmidt
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung PO-BOX 510119, 01314 Dresden, Germany
Arndt Mücklich
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung PO-BOX 510119, 01314 Dresden, Germany
Get access

Abstract

The synthesis of spatially controlled Ge nanowires and nanoclusters by Ge+ ion implantation in oxidized V-grooves on (001) Si surfaces has been studied experimentally as well as theoretically. The V-grooves were prepared by anisotropic wet chemical etching and thermal oxidation. The SiO2-covered V-grooves were implanted with 70 keV Ge+ ions up to a fluence of 1017 cm−2. Ge accumulates within the SiO2 at the bottom of the V-groove, which has been proven by analytical TEM (EDX-mapping). Theoretical studies have shown that the Ge accumulation is caused by the V-groove geometry, forward sputtering, and re-deposition. During subsequent annealing the redistributed Ge forms a nanowire by precipitation, ripening and coalescence. Kinetic lattice Monte Carlo simulations of the nanowire formation process show growth instabilities and self-organization phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Allgair, J., Rack, M.J., Widden, T.K., Kozicki, M.N., and Ferry, D.K., J. Vac. Sci. Technol. A 14, 1855 (1996).Google Scholar
2. Namatsu, H., Nagase, M., Kurihara, K., Iwadate, K., Furuta, T., and Murase, K., J. Vac. Sci. Technol. B 13, 1473 (1995).Google Scholar
3. White, C.W., Budai, J.D., Withrow, P., Zhu, J.G, Pennycook, S.J., Zuhr, R.A., Hembree, D.M. Jr, Henderson, D.O., Magruder, R.H., , M, Yacaman, J., Mondragon, G., and Prawer, S., Nucl. Instr. Meth. B127/128, 545 (1997).Google Scholar
4. Heinig, K.H., Schmidt, B., Markwitz, A., Grötzschel, R., Strobel, M., and Oswald, S., Nucl. Instr. Meth. B148, 969 (1999).Google Scholar
5. Ishikawa, Y., Shibata, N., and Fukatsu, F., Nucl. Instr. Meth. B147, 304 (1999).Google Scholar
6. Müller, T., Heinig, K.H., and Schmidt, B., E-MRS 2000 Symposium R, Nucl. Instr. Meth. B, in press.Google Scholar
7. Nastasi, M., Mayer, J.W., and Hirvonen, J.K., in Ion-Solid Interactions: Fundamentals and Applications, Cambridge Solid State Series, Cambridge University Press, 1996, chapter 9, pp. 218253.Google Scholar
8. Oswald, S., Schmidt, B., and Heinig, K.H., Surf. Interface Anal. 29, 249 (2000).Google Scholar