Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:37:50.041Z Has data issue: false hasContentIssue false

Synthesis of SiC on Si by Seeded Supersonic Beams of Fullerenes

Published online by Cambridge University Press:  10 February 2011

G. Ciullo
Affiliation:
CeFSA CNR-ITC Centro di Fisica degli Stati Aggregati, Via Sommarive 18, 38050 Povo di Trento (Italy)
F. Biasioli
Affiliation:
CeFSA CNR-ITC Centro di Fisica degli Stati Aggregati, Via Sommarive 18, 38050 Povo di Trento (Italy)
A. Podestá
Affiliation:
INFM Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy)
P. Milani
Affiliation:
INFM Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy)
T. Toccoli
Affiliation:
CeFSA CNR-ITC Centro di Fisica degli Stati Aggregati, Via Sommarive 18, 38050 Povo di Trento (Italy)
S. Iannotta*
Affiliation:
CeFSA CNR-ITC Centro di Fisica degli Stati Aggregati, Via Sommarive 18, 38050 Povo di Trento (Italy)
*
tel.: ++43 0461 314 251, [email protected]
Get access

Abstract

A well characterized C60 supersonic seeded beam has been used to synthesize SiC films on Si (111) 7×7. The control of beam parameters such as energy and flux distributions is shown to be important to improve quality of films in terms of morphology, defect density and structure. We demonstrate that a kinetic energy of a few eV of the C60 precursor is enough to induce carbidization at moderate substrate temperature. Kinetic energy activated SiC formation at 750°C is achieved with a strong reduction of the dimensions and density of defects. The films show a reduced roughness of about 2.5 nm (root mean square).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Steckl, I. A.J. and Li, J.P., IEEE Trans. Electr. Dev. 39, 64(1992).Google Scholar
2. Nagasawa, H. and Yagi, K., Phys. Stat. Sol. (b) 202, 335(1997).Google Scholar
3. Scholtz, R., U. Gösele, Wishmeier, F. and Niemann, E., Appl. Phys. A 66, 59(1998).Google Scholar
4. Li, J.P. and Steckl, A.J., J. Electrochem. Soc. 142, 634(1995).Google Scholar
5. Zekentes, K. etal., Appl. Surface Science 102, 22(1996).Google Scholar
6. Hamza, A.V., Balooch, M. and Moalem, M., Surf. Sci. 317, LI 129 (1994).Google Scholar
7. Chen, D., Workman, R. and Sarid, D., Surface Science 344, 23(1995).Google Scholar
8. Hu, C.W., Kasuya, A., Suto, S., Wawro, A. and Nishina, Y., Appl. Phys. Lett. 68, 1253(1996).Google Scholar
9. Sun, et al., J. Appl. Phys. 84, 6451(1998).Google Scholar
10. Miyasato, et al., J. Appl. Phys. 85, 3565(1999).Google Scholar
11. van Opbergen, M., Boschetti, A. and Iannotta, S., Optics Express 4, 53(1999).Google Scholar
12. Milani, P. and lannotta, S., Synthesis of Nanophase Materials by Cluster Beam Deposition (Springer -Verlag, Berlin 1999), p. 83.Google Scholar
13. Pavolska, A., Torres, V.M., Bauer, E., Doak, R.B. and Tsong, I.S.T., Thomson, D.B. and Davis, R.F., Appl. Phys. Lett. 75, 989(1999).Google Scholar
14. Pacheco, K.A., Appl. Phys. Lett. 69, 1110(1996).Google Scholar
15. Biasioli, F., Boaschetti, A., Barborini, E., Piseri, P., Milani, P. and Iannotta, S., Chem. Phys. Lett. 270, 115(1997).Google Scholar
16. Toccoli, T., van Opbergen, M., Boschetti, A., Ciullo, G., Ronchin, S. and Jannotta, S., Phylosophical Magazine 79, 2157– (1999).Google Scholar
17. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666(1986).Google Scholar
18. Balooch, M. and Hamza, A.V., Appl. Phys. Lett. 63, 150(1993).Google Scholar
19. Ciullo, G., Moratti, M., Toccoli, T. and lannotta, S., Philosophical Magazine B 80 (2000), in press.Google Scholar
20. Nelson, A.J., Mason, A.R., Swartzlander, A.B., Kazmerski, L.L., Saxena, N., Fortman, C.M. and Russell, T.W.F., J. Vac. Sci. Technol. A 8, 1538(1990).Google Scholar
21. Sakamoto, et al., Appl. Surf. Sci. 121/122, 200 (1997).Google Scholar