Published online by Cambridge University Press: 28 January 2011
Traditionally, the synthesis of resorcinol formaldehyde (R/F) aerogels consists of a 2-step (base/acid catalysis) polycondensation reaction. Since the acid catalyst in the reaction controls the gelation time, the replacement of the acid catalyst with a non-ionic photo-acid generator decreased the gelation time from hours, down to a few minutes at room temperature using a UV light source. The reaction rate was not only fast, but the liquid precursor was stable for several hours prior to UV exposure. After drying, the resulting aerogel porosity was characterized by scanning electron microscopy (SEM) and confirmed the internal structure of the aerogel was similar to the original R/F pore structures. This paper will discuss the modifications made to the traditional R/F formulation, as well as the benefits of a fast gelation time for aerogel casting applications such as thin films, cylinders, and solid and hollow microspheres.