Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T18:01:30.507Z Has data issue: false hasContentIssue false

Synthesis of Porous Materials via Multiscale Templating Approaches: Emulsions, Nanoparticles, Supercritical Fluids, and Directional Freezing

Published online by Cambridge University Press:  26 February 2011

Haifei Zhang
Affiliation:
[email protected], University of Liverpool, Department of Chemistry, Crown Street, Liverpool, L69 3BX, United Kingdom
Irshad Hussain
Affiliation:
[email protected], University of Liverpool, Department of Chemistry, Crown Street, Liverpool, L69 3BX, United Kingdom
James Long
Affiliation:
[email protected], University of Liverpool, Department of Chemistry, Crown Street, Liverpool, L69 3BX, United Kingdom
Bien Tan
Affiliation:
[email protected], University of Liverpool, Department of Chemistry, Crown Street, Liverpool, L69 3BX, United Kingdom
Mathias Brust
Affiliation:
[email protected], University of Liverpool, Department of Chemistry, Crown Street, Liverpool, L69 3BX, United Kingdom
Matthew Rosseinsky
Affiliation:
[email protected], University of Liverpool, Department of Chemistry, Crown Street, Liverpool, L69 3BX, United Kingdom
Steven Rannard
Affiliation:
[email protected], University of Liverpool, Department of Chemistry, Crown Street, Liverpool, L69 3BX, United Kingdom
Michael Butler
Affiliation:
[email protected], Unilever R&D Colworth, Sharnbrook, MK44 1LQ, United Kingdom
Andrew Cooper
Affiliation:
[email protected], University of Liverpool, Department of Chemistry, Crown Street, Liverpool, L69 3BX, United Kingdom
Get access

Abstract

A “toolkit” of emulsion templating and directional freezing methods has been developed which allows the preparation of a wide variety of organic, inorganic, and metallic materials in a macroporous or hierarchically porous form.1,18,20 The various processes use water, organic solvents, or aqueous/organic emulsions as the template phase. We have shown that the organic solvent can be replaced by liquid CO2 in both the emulsion templating and directional freezing approaches, thus reducing organic waste and offering advantages in applications such as the preparation of biomaterials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhang, H. and Cooper, A. I., Soft Matter, 2005, 1, 107.Google Scholar
2. Cameron, N. R. and Sherrington, D. C., Adv. Polym. Sci., 1996, 126, 163. A. Barbetta, N. R. Cameron and S. J. Cooper, Chem. Commun., 2000, 221. A. Imhof and D. J. Pine, Nature, 1997, 389, 948. A. Imhof and D. J.Pine, Adv. Mater., 1998, 10, 697. B. P. Binks, Adv. Mater., 2002, 14, 1824.Google Scholar
3. Zhang, H. and Cooper, A. I., Chem. Mater., 2002, 14, 4017.Google Scholar
4. Butler, R., Davies, C. M. and Cooper, A. I., Adv. Mater., 2001, 13, 1456.Google Scholar
5. Butler, R., Hopkinson, I. and Cooper, A. I., J. Am. Chem. Soc., 2003, 125, 14473.Google Scholar
6. Tan, B. and Cooper, A. I., J. Am. Chem. Soc., 2005, 127, 8938.Google Scholar
7. Tan, B., Lee, J.-Y. and Cooper, A. I., 2006, submitted for publication.Google Scholar
8. Lee, J.-Y., Tan, B. and Cooper, A. I., 2006, submitted for publication.Google Scholar
9. Cooper, A. I., Adv. Mater., 2003, 15, 1049.Google Scholar
10. Zhang, H., Hardy, G. C., Khimyak, Y. Z., Rosseinsky, M. J. and Cooper, A. I., Chem. Mater.,, 2004, 16, 4245.Google Scholar
11. Zhang, H., Hardy, G. C., Rosseinsky, M. J. and Cooper, A. I., Adv. Mater., 2003, 15,78. Google Scholar
12. Zhang, H. and Cooper, A. I., Ind. Eng. Chem. Res., 2005, 44, 8707.Google Scholar
13. Zhang, H., Hussain, I., Brust, M. and Cooper, A. I., Chem. Commun., 2006, 2539.Google Scholar
14. Zhang, H. and Cooper, A. I., J. Mater. Chem., 2005, 15, 2157.Google Scholar
15. Zhang, H., Hussain, I., Brust, M. and Cooper, A. I., Adv. Mater., 2004, 16, 27.Google Scholar
16. Mahler, W. and Bechtold, M. F., Nature, 1980, 285, 27.Google Scholar
17. Mukai, S. R., Nishihara, H. and Tamon, H., Chem. Commun. 2004, 874.Google Scholar
18. Zhang, H., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P. and Cooper, A. I.,Nature Mater., 2005, 4, 787.Google Scholar
19. Deville, S., Saiz, E., Nalla, R. K. and Tomsia, A. P., Science, 2006, 311, 515.Google Scholar
20. Zhang, H., Long, J. and Cooper, A. I., J. Am. Chem. Soc., 2005, 127, 13482.Google Scholar
21. Ruckenstein, E. and Hong, L., Polymer 1995, 36, 2857.Google Scholar
22. Ruckenstein, E. and Sun, Y., J. Appl. Polym. Sci. 1996, 61, 1949.Google Scholar
23. Ji, C., Searson, P. C., J. Phys. Chem. B 2003, 2003, 4494.Google Scholar
24. Ding, Y., Erlebacher, J., J. Am. Chem. Soc. 2003, 125, 7772.Google Scholar
25. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N., Sieradzki, K., Nature 2001, 410,450.Google Scholar
26. Velev, O. D., Tessier, P. M., Lenhoff, A. M., Kaler, E. W., Nature 1999, 401, 548.Google Scholar
27. Bartlett, P. N., Baumberg, J. J., Birkin, P. R., Ghanem, M. A., Netti, M. C., Chem.Mater. 2002, 14, 2199.Google Scholar
28. Meldrum, F. C., Seshadri, R., Chem. Commun. 2000, 29.Google Scholar
29. Walsh, D., Arcelli, L., Ikoma, T., Tanaka, J., Mann, S., Nature Mater. 2003, 2, 386.Google Scholar
30. Kulak, A., Davis, S. A., Dujardin, E., Mann, S., Chem. Mater. 2003, 15, 528.Google Scholar
31. Shchukin, D. G., Caruso, R. A., Chem. Commun. 2003, 1478.Google Scholar