Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:30:33.510Z Has data issue: false hasContentIssue false

Synthesis of Polyvanadates from Solutions

Published online by Cambridge University Press:  10 February 2011

J. Livage
Affiliation:
Chimie de la Matière Condensée, Université P.M.Curie, Paris, France
L. Bouhedja
Affiliation:
Chimie de la Matière Condensée, Université P.M.Curie, Paris, France
C. Bonhomme
Affiliation:
Chimie de la Matière Condensée, Université P.M.Curie, Paris, France
M. Henry
Affiliation:
Chimie Moléculaire des Solides, Université Louis Pasteur, Strasbourg, France
Get access

Abstract

A wide range of polyvanadates can be synthesized from aqueous solutions. Vanadium oxide gels V2O5nH2O are formed around the point of zero charge (pH≈2). They exhibit a ribbon-like structure. Weak interactions between these ribbons lead to the formation of mesophases in which vanadium oxide gels or sols behave as nematic liquid crystals. Organic species can be easily intercalated between these oxide ribbons leading to the formation of hybrid nanocomposites made of alternative layers of organic and inorganic components. Hybrid nanophases can also be formed above the point of zero charge, in the presence of large organic ions such as [N(CH3)4]+. They often exhibit layered structures in which organic cations lie between the polyvanadate planes. Cluster shell polyvanadates have been obtained in the presence of anions such as Cl or I. They are made of negatively charged polyvanadate hollow spheres in which the anion is encapsulated. Organic cations then behave as counter ions for the formation of the crystal network.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pope, M.T., Hetero and isopolymetallates, Springer-Verlag, Berlin (1983)Google Scholar
2. Pope, M.T. and Müller, A., Angew. Chem. Int. Ed. Engl., 30, p. 34 (1991)Google Scholar
3. Livage, J., Chem. Mater., 3, p. 578 (1991)Google Scholar
4. Liu, Y.J., Schindler, J.L., DeGroot, D.C., Kannewurf, C.R., Hirpo, W., Kanatzidis, M.G., Chem. Mater., 8, p. 525 (1996)Google Scholar
5. Wu, C.G., DeGroot, D.C, Marcy, H.O., Schindler, J.L., Kannewurf, C.R., Liu, Y.J., Hirpo, W., Kanatzidis, G., Chem. Mater., 8, p. 1992 (1996)Google Scholar
6. Rioux, D., Ferey, G., Inorg. Chem., 34, p. 6520 (1995)Google Scholar
7. Riou, D., Ferey, G., J. Solid State Chem., 120, p. 137 (1995)Google Scholar
8. Nazar, L.F., Koene, B.E., Britten, J.F., Chem. Mater., 8, p. 327 (1996)Google Scholar
9. Zhang, Y., Haushalter, R.C., Clearfield, A., Inorg. Chem., 35, p. 4950 (1996)Google Scholar
10. Müller, A., Reuter, H. and Dilinger, S., Angew. Chem. Int. Ed. Engl., 34, p. 2328 (1995)Google Scholar
11. Pozarnsky, G.A., McCormick, A.V., Chem. Mater., 6, p. 380 (1994)Google Scholar
12. Yao, T., Oka, Y., Yamamoto, N., Mat. Res. Bull., 27, p. 669 (1992)Google Scholar
13. Baffier, N., Aldebert, P., Livage, J., Haesslin, H.W., J. Colloids Interface Sci., 141, p. 467 (1991).Google Scholar
14. Davidson, P., Bourgaux, C., Schoutteten, L., Sergot, P., Williams, C., Livage, J., J. Phys. II France, 5, p. 1577 (1995).Google Scholar
15. Davidson, P., Garreau, A., Livage, J., Liq. Cryst., 16, p. 905 (1994).Google Scholar
16. Averbuch-Pouchot, M.T., Durif, A., Eur. J. Solid State Inorg. Chem., 31, p. 567 (1994)Google Scholar
17. Averbuch-Pouchot, M.T., Eur. J. Solid State Inorg. Chem., 31, p. 557 (1994)Google Scholar
18. Zavalij, P.Y., Whittingham, M.S., Boylan, E.A., Zeit. Krist., 211 (1996)Google Scholar
19. Chirayil, T., Zavalij, P., Whittingham, M.S., Solid State Ionics, 84, p. 163 (1996)Google Scholar
20. Whittingham, M.S., Guo, J-D., Chirayil, T., Janauer, G., Zavalij, P., Solid State Ionics, 75, p. 257 (1995)Google Scholar
21. Müller, A., Krickemeyer, E., Penk, M., Walberg, H.J, Bögge, H., Angew. Chem. Int. Ed. Engl., 26, p. 1045 (1987)Google Scholar
22. Müller, A., Penk, M., Rohlfing, R., Krickemeyer, E., Döring, J., Angew. Chem., Int. Ed. Engl., 29, p. 926 (1990)Google Scholar
23. Johnson, G.K., Schlemper, E.O., J. Amer. Chem. Soc., 100, p. 3645 (1978)Google Scholar
24. Baess, C.F., Mesmer, R.E., Hydrolysis of cations. Wiley, New York (1976)Google Scholar
25. Comba, P., Helm, L., Helvetica Chim. Acta, 71, p. 1406 (1988)Google Scholar
26. Henry, M., Jolivet, J.P., Livage, J., Structure and Bonding, 77, p. 153 (1992)Google Scholar
27. Henry, M., Mater. Sci. Forum, 152–153, p. 355 (1994)Google Scholar
28. Galy, J., Carpy, A., Acta Cryst., B31, p. 1794 (1975)Google Scholar
29. Bénard, M., private communicationGoogle Scholar