Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:39:39.006Z Has data issue: false hasContentIssue false

Synthesis of nanostructured silica powders by a room temperature aerosol process

Published online by Cambridge University Press:  10 February 2011

Jingyu Hyeon-Lee
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, OH, 4522-0012
Gregory Beaucage
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, OH, 4522-0012
Sotiris. E. Pratsinis
Affiliation:
Department of Chemical Engineering, University of Cincinnati, Cincinnati, OH, 45221-0171
Get access

Abstract

Nano-sized porous silica powders are synthesized by a room temperature aerosol process. Reactant mixing configuration, reactant temperature, and drying temperature effects on the physical and morphological features of these powders are studied by nitrogen adsorption and small angle xray scattering techniques. These silica powders have high specific surface areas up to 600 m2/g, and show narrowly confined mesoporous characteristics. The powders display some structural change with temperature. The morphological features are modeled as mass fractals by small angle x-ray scattering. Measured fractal dimensions are around 2.8, indicating diffusion limited growth processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hyeon-Lee, J., Beaucage, G., and Pratsinis, S. E., Chem. Mater. 9, 2400 (1997).Google Scholar
2. Huo, Q., Margolese, D. I., and Stucky, G. D., Chem. Mater. 8, 1147 (1996).Google Scholar
3. Bickmore, C. R. and Laine, R. M., J. Am. Ceram. Soc. 79 (11), 2865 (1996).Google Scholar
4. Hua, D. W. and Smith, D. M. in Better Ceramics Through Chemistry V. edited by Hampden-Smith, M. J., Klemplerer, W. G., and Brinker, C. J. (Mater. Res. Soc. Proc. 271, Pittsburg, PA, 1992) pp. 547552.Google Scholar
5. Jarzebski, A. B., Lorenc, J., Aristiv, Y. I., and Lisitza, N., J. Non-Cryst. Solids. 190,198 (1995).Google Scholar
6. Munoz-Aguado, M. J. and Gregorikiewitz, M., J. Colloid Interf. Sci. 185, 459 (1997).Google Scholar
7. Blacher, S., Pirard, R., and Pirard, J. P., Langmuir, 13, 1145 (1997).Google Scholar
8. Burkett, S. L., Sims, S. D., and Mann, S., Chem. Commun., 1367 (1996)Google Scholar
9. Brunauer, S., Emmett, P. H., and Teller, E., J. Am. Chem. Soc. 60, 309 (1938).Google Scholar
10. Dubinin, M. M., Chem. Rev. 60, 235 (1960).Google Scholar
11. Pratsinis, S. E., Zhu, W., and Vemury, S., Powder Tech. 86, 87 (1996).Google Scholar
12. Zhu, W., Pratsinis, S. E. in Nanotechnology, edited by Chow, G.-M. and Gonsalves, K. E. (Am. Chem. Soc. Symp. 622, Washington DC, 1996) pp. 6478.Google Scholar
13. Barrett, E. P., Joyner, L. G., and Halenda, P. P, J. Am. Chem. Soc. 73, 3737 (1951).Google Scholar
14. Greg, S. J. and Sing, K. S. W., Adsorption. Surface Area. and Porosity, 2nd ed. (Academic Press, New York, 1982), p. 25.Google Scholar
15. Schaefer, D. W. and Hurd, A. J., J. Aerosol. Sci. Technol. 12, 876 (1990).Google Scholar
16. Hurd, A. J. and Flower, W., J. Colloid Interf. Sci, 122, 178 (1988).Google Scholar
17. Witten, T. A. and Sanders, L. M., Phys. Rev. Lett. 47, 1400 (1981).Google Scholar