Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:41:36.740Z Has data issue: false hasContentIssue false

Synthesis of Nanoscaled Powders by Laser-Evaporation of Materials

Published online by Cambridge University Press:  10 February 2011

W. Riehemann*
Affiliation:
Institut für Werkstoflkunde und Werkstoffiechnik, Technische Universität Clausthal, Agricolastr. 6, D-38678 Clausthal-Zellerfeld
Get access

Abstract

Ultra fine powders with particle diameters less than 100 nm are becoming increasingly important for various electronic, magnetic and chemical applications as well as in nanostructured materials with extremely fine grained components. Nowadays there are a lot of methods available to synthesize nanoscaled powders. One of the most versatile production methods delivering clean particle surfaces is laser evaporation. Interaction of high intensity laser beams with materials leads to evaporation and subsequent condensation of very small mostly spherical particles with diameters in the order of 10 nm. This means specific surfaces of the powders in the order of 100 m2/g. Depending on the lasers intensity, the surrounding gas, its pressure, and the evaporated material the particles have mean diameters ranging from 4 to 20 nm. Their distribution is generally lognormal with a geometrical standard deviation in the narrow range between 1.5 and 1.7. These properties of the powders can be explained by their originating mechanism, nucleation and particle growth in the surrounding gas. With this method nanosized powders of various materials can be produced like pure metals, alloys, metal oxides, other ceramics and new phases which are probably stabilized by the small particle size. Using a 1 kW - Nd:YAG - laser powder production rates of up to 100 g/h can be achieved for alumina. Contrary to other synthesis methods e.g. the sol-gel method the produced nanoparticles are in particular free of solvents or other residuals. This makes laser synthesised powders extremely usefiil for catalytic or gas sensor applications where defined surface qualities are necessary.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gaertner, G.F. and Lydtin, H., NanoStructured Materials 4, 559 (1994)Google Scholar
2. Ehbrecht, M., Ferkel, H., Holz, L., Huisken, F., Polivanov, Y.N., Schmidt, R., Smirnov, V.V., and Stelmakh, O.M., I. Appl. Phys. 78, 1 (1995)Google Scholar
3. Gleiter, H., Prog. Mat. Sci, 33, 223 (1989)Google Scholar
4. Chokhsi, A.H., Rosen, A., Karch, J. and Gleiter, H., Scr. Metall. 23, 1679 (1989)Google Scholar
5. Karch, J., Birringer, R. and Gleiter, H., Nature 330, 556 (1987)Google Scholar
6. Yoshizawa, Y., Oguma, S., and Yamauchi, K., J. Appl. Phys. 64, 6044 (1988)Google Scholar
7. Herzer, G., Mat. Sci. Eng., A133, 1 (1991)Google Scholar
8. Suryanarayana, C., Int. Mat. Rev. 40, 41 (1995)Google Scholar
9. Ferkel, H., Naser, I. and Riehemann, W., NanoStructured Materials, 8, 457 (1998)Google Scholar
10. Riehemann, W. and Mordike, B.L., in Laser Treatment of Materials, edited by Mordike, B.L. (DGM Informationsgesellschaft, Oberursel, 1987) p. 459 Google Scholar
11. Riehemann, W., Mordike, B.L., Lasers in Engendering 1, 223 (1992)Google Scholar
12. Fritze, L., Riehemann, W. and Mordike, B.L., PM'90, Wembley KI, 23 (1990) 2327 Google Scholar
13. Michel, G., Staupendahl, G., Eberhardt, G., and Vogelsberger, W., in Fine Solid Particles, edited by Schwedes, J. and Bernotat, S. (Shaker Verlag, Aachen 1997) p. 127 Google Scholar
14. Fritze, L., PhD thesis, Technical University Clausthal, 1992 Google Scholar
15. Lee, H.-Y., PhD thesis, Technical University Clausthal, 1992 Google Scholar
16. Lee, H.-Y., Riehemann, W. und Mordike, B.L., Z. Metallkunde 84, 79 (1993)Google Scholar
17. Ferkel, F., Naser, I., Riehemann, W. and Mordike, B.L., in Fine Solid Particles, edited by Schwedes, I. and Bernotat, S. (Shaker Verlag, Aachen, 1997) p. 144 Google Scholar
18. Gaertner, G.F. Janiel, P., Lydtin, H., Rehder, L., in Synthesis and Measurement of ultrafine Particles, (Delfit University Press, 1993) p. 41 Google Scholar
19. Matsuawa, A. et al., Transact.JWRI, 15, 61 (1986)Google Scholar
20. Steen, W. M., Laser Material Processing, (Springer-Verlag, London, 1991) pp. 43 Google Scholar
21. Granqvist, C.G. and Buhrmann, R.A., J. Appl. Phys, 47, 2200 (1976)Google Scholar
22. Hints, W.C., Aerosol Technology, (Wiley-Interscience Publication, Boston, 1982) pp. 164 Google Scholar
23. Steen, W. M., Laser Material Processing, (Springer-Verlag, London, 1991) pp. 173 Google Scholar
24. Weichert, R., Kerber, C., in Fine Solid Particles, edited by Schwedes, I. and Bernotat, S. (Shaker Verlag, Aachen, 1997) p. 168 Google Scholar
25. Kato, M., Jap. I. Appl. Phys. 15, 757 (1976)Google Scholar
26. Dietz, T., Smalley, R. et al., I. Chem. Phys. 74, 6511 (1981)Google Scholar
27. Bouland, D. in Synthesis and Measurement of ultrafine Particles, (Delft University Press, 1993) p.31 Google Scholar
28. Bothe, I., Rath, W., Bachmann, F., Riehemann, W., and Mordike, B.L., Proc. Conf. Laser '93, MUnchen (1993)Google Scholar
29. Loosen, P., Treusch, H.-G., in Werkstoffbearbeitung mit Laserstrahlung, (Carl Hanser Verlag, München, 1993) p. 19 Google Scholar
30. Ferkel, H. and Riehemann, W., NanoStructured Materials 7, 835 (1996)Google Scholar
31. Ferkel, H., private communicationGoogle Scholar
31. Baraton, M.-I., J. High Temp. Chem. Processes 3, 545 (1994)Google Scholar
32. Baraton, M.-I., Chen, X. and Gonsalves, K.E., in Molecularly Designed Nanostructured Materials and Composites, edited by Chow, G.-M. and Gonsalves, K.E., (ACS Book 622 Washington DC, 1996) pp. 331333.Google Scholar
33. Baraton, M.-I., private communicationGoogle Scholar
34. Tribout, J., Chancel, F., Baraton, M.-I., Ferkel, H. and Riehemann, W., this proceedingGoogle Scholar