No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
A device with nanometric resolution in space and millisecond resolution in time, intended for neural electrophysiological imaging applications, is being developed and fabricated for in vitro experimentation. The device consists of (i) an integrated circuit (IC) platform and (ii) a carbon nanotube/polymethylmethacrylate composite construct. Arrays of equi-spaced multiple gold electrodes were fabricated using combined e-beam and optical lithography to achieve three types of IC platforms with three different scales of resolution. Carbon nanotubes were synthesized on silicon dioxide substrates using a chemical vapor deposition method. Subsequently, the carbon nanotube arrays were infiltrated with in situ polymerized polymethylmethacrylate to achieve electrical insulation between adjacent nanotube bundles. The composite construct was fabricated and exhibited electrical conductivity and connectivity between two faces of the composite along the length of the nanotubes. The carbon nanotube arrays grown on silicon dioxide exhibited uniform length and a high level of alignment, which was preserved subsequent the in situ polymerization process. The devices can be deployed as an interface between ICs and mammalian cells.