Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:25:36.732Z Has data issue: false hasContentIssue false

Synthesis of Mn2+ Doped CdS Nanocrystals Embedded in a Sol-Gel Silica Matrix: Characterization of the Luminescence Activator

Published online by Cambridge University Press:  15 February 2011

G. Counio
Affiliation:
Laboratoire de Physique de la Matière Condensée, C.N.R.S.U.R.A.1254D, Ecole Polytechnique, 91128 Palaiseau, France.
S. Esnouf
Affiliation:
Laboratoire de Physique de la Matière Condensée, C.N.R.S.U.R.A.1254D, Ecole Polytechnique, 91128 Palaiseau, France.
T. Gacoin
Affiliation:
Laboratoire de Physique de la Matière Condensée, C.N.R.S.U.R.A.1254D, Ecole Polytechnique, 91128 Palaiseau, France.
P. Barboux
Affiliation:
Laboratoire de Physique de la Matière Condensée, C.N.R.S.U.R.A.1254D, Ecole Polytechnique, 91128 Palaiseau, France.
A. Hofstaetter
Affiliation:
1. Physics Institute, University of Giessen, D 35392 Giessen, Germany.
J.-P. Boilot
Affiliation:
Laboratoire de Physique de la Matière Condensée, C.N.R.S.U.R.A.1254D, Ecole Polytechnique, 91128 Palaiseau, France.
Get access

Abstract

Mn2+-doped CdS nanocrystals (1.2 to 2.4 nm in diameter) embedded in organic-inorganic silica xerogels have been synthesized. Extensive studies (EXAFS, ESR and ENDOR) allow us to localize the ions responsible for the bright luminescence observed in such materials (quantum yield of 7%). The average number of Mn2+ per nanocrystal is in the 0.2–0.8 range, and the emission arises from an energy transfer from surface trapped carriers to Mn2+ ions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brus, L.E., Appl. Phys. A53, 465 (1991).Google Scholar
2Steigerwald, M.L., Alivisatos, A.P., Gibson, J.M., Harris, T.D., Kortan, R., Muller, A.J., Thayer, A.M., Duncan, T.M., Douglas, D.C., Brus, L.E., J. Am. Chem. Soc. 110, 3046 (1988).Google Scholar
3Wang, Y., Herron, N., Phys. Rev. B, 42–11, 7253 (1990).Google Scholar
4Gacoin, T., Train, C., Chaput, F., Boilot, J.-P., Aubert, P., Gandais, M., Wang, Y. and Lecomte, A., SPIE Sol-gel optics II, 1758, 565 (1992).Google Scholar
5Michalowicz, A. in EXAFS pour le Mac, Logiciels pour la Chimie, Société française de Chimie, Paris (1991).Google Scholar
6Allen, T.B., J. Chem. Phys. 43, 3.820 (1965).Google Scholar
7Kreissl, J., Gehlhoff, W., Phys. Stat. Sol. (a), 81, 701 (1984).Google Scholar
8Geschwind, S. in Hyperfine interactions, edited by Freeman, A.J. and Frankei, R.B., Academic Press, 226 (1967).Google Scholar
9Hässelbarth, A., Eychmüller, A., Weller, H., Chem. Phys. Lett. 203–2, 271 (1993).Google Scholar
10Chamarro, M.A., Voliotis, V., Grousson, R., Lavallard, P., Gacoin, T., Counio, G., Boilot, J.-P. and Cases, R., J. of Crystal Growth, 159, 853 (1996).Google Scholar
11Counio, G., Esnouf, S., Gacoin, T. and Boilot, J.-P., accepted in J. Phys. Chem.Google Scholar
12Froelich, H.C., J. Opt. Soc. Am. 43, 320 (1953).Google Scholar