Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:46:30.807Z Has data issue: false hasContentIssue false

Synthesis of Metal Carbides Using Biological Templates

Published online by Cambridge University Press:  15 February 2011

Yongsoon Shin
Affiliation:
Pacific Northwest National Laboratory, 902 Battelle Blvd, MS K2-44,Richland, WA 99354
Xiaohong S. Li
Affiliation:
Pacific Northwest National Laboratory, 902 Battelle Blvd, MS K2-44,Richland, WA 99354
William D. Samuels
Affiliation:
Pacific Northwest National Laboratory, 902 Battelle Blvd, MS K2-44,Richland, WA 99354
Yong Wang
Affiliation:
Pacific Northwest National Laboratory, 902 Battelle Blvd, MS K2-44,Richland, WA 99354
Larry R. Pederson
Affiliation:
Pacific Northwest National Laboratory, 902 Battelle Blvd, MS K2-44,Richland, WA 99354
Greg J. Exarhos
Affiliation:
Pacific Northwest National Laboratory, 902 Battelle Blvd, MS K2-44,Richland, WA 99354
Get access

Abstract

Nanocrystalline metal carbides (MC: M=Si, Ti) have been prepared using cellulose network mineralized with silica and titania by carbothermal reduction at high temperature in Ar. Hierarchical biological structures indigenous to the cellulose precursor were completely replicated after the reaction. Cubic phase MC composites show relative low oxygen content 0.24 wt% and a high lattice parameter of 4.327Å in TiC. The particle sizes of the MC composites are 200-700nm for SiC and 10-50nm for TiC, and high BET surface area, up to 150m2/g.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davis, S. A., Breulmann, M., Rhodes, K. H., Zhang, B., and Mann, S., Chem. Mater. 13, 3218 (2001).Google Scholar
2. Anderson, M. W., Holmes, S. M., Hanif, N., and Cundy, C. S., Angew. Chem. Inter. Ed. Engl. 39, 2707 (2000).Google Scholar
3. Davis, S. A., Burkett, S. L., Mendelson, N. H., and Mann, S., Nature 385, 420 (1997).Google Scholar
4. Zhang, B., Davis, S. A., Mendelson, N. H., and Mann, S., Chem. Commun. 781 (2000).Google Scholar
5. Hall, S. R., Bolger, H., and Mann, S., Chem. Commun. 2784 (2003).Google Scholar
6. B, Zhang, Davis, S. A., and Mann, S., Chem. Mater. 14, 1369 (2002).Google Scholar
7. Ogasawara, W., Shenton, W., Davis, S. A., and Mann, S., Chem. Mater. 12, 2835 (2000).Google Scholar
8. Shin, Y., Liu, J., Chang, J. H., Nie, Z. and Exarhos, G. J., Adv. Mater. 13, 728 (2001).Google Scholar
9. Shin, Y., Wang, L.-Q., Liu, J. and Exarhos, G. J., J. Ind. Eng. Chem. 9, 76 (2003).Google Scholar
10. Patel, M., and Padhi, B. K., J. Mater. Sci. Lett. 12, 1234 (1993).Google Scholar
11. Ota, T., Imeada, M., Takase, H., Kobayashi, M., Kinoshita, N., Hirashita, T., Miyazaki, H., and Hikichi, Y., J. Am. Ceram. Soc. 83, 1521 (2000).Google Scholar
12. Seiber, H., Rambo, C., Cao, J., Vogli, E., and Griel, P., Key Eng. Mater. 206-213, 2009 (2001).Google Scholar
13. Patel, M., and Padhi, B. K., J. Mater. Sci. 25, 1335 (1990).Google Scholar
14. Dong, A., Wang, Y., Tang, Y., Ren, N., Zhang, Y., Yue, Y., and Gao, Z., Adv. Mater. 14, 926 (2002).Google Scholar
15. Lu, Q., Hu, J., Tang, K., Qian, Y., Zhou, G., Liu, X., and Zhu, J., Appl. Phys. Lett. 1999, 75, 507 (1999).Google Scholar
16. Jiang, Z., and Rhine, W. E., Chem. Mater. 3, 1132 (1991).Google Scholar
17. Kieffer, R., Nowtony, H., Ettmayer, P., and Dufek, G., Metall. 26, 701 (1972).Google Scholar