Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:33:14.749Z Has data issue: false hasContentIssue false

Synthesis of mesoporous complex framework zirconium phosphates via organicinorganic nanocomposites: genesis of structure, adsorption and catalytic properties

Published online by Cambridge University Press:  01 February 2011

Yulia V. Frolova
Affiliation:
Novosibirsk State University, Pirogova st, 2, Novosibirsk, 630090, Russia Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
Vladislav A. Sadykov
Affiliation:
Novosibirsk State University, Pirogova st, 2, Novosibirsk, 630090, Russia Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
S. N. Pavlova
Affiliation:
Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
S. A. Veniaminov
Affiliation:
Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
R. V. Bunina
Affiliation:
Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
E. B. Burgina
Affiliation:
Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
V. N. Kolomiichuk
Affiliation:
Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
T. V. Larina
Affiliation:
Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
N. V. Mezentseva
Affiliation:
Novosibirsk State University, Pirogova st, 2, Novosibirsk, 630090, Russia Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
M. A. Fedotov
Affiliation:
Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
A. M. Volodin
Affiliation:
Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
E. A. Paukshtis
Affiliation:
Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
V. B. Fenelonov
Affiliation:
Boreskov Institute of Catalysis, pr. Lavrentieva 5, Novosibirsk, 630090, Russia.
R. Roy
Affiliation:
Materials Research Laboratory Penn State University.
D. Agrawal
Affiliation:
Materials Research Laboratory Penn State University.
Get access

Abstract

This work presents the first results of synthesis of framework binary phosphates of zirconium and transition metal cations (Co, Cu, Ce) via nanocomposites of starting inorganic salts with citric acid and studies of their structure genesis. Nanoparticles of layered Zr phosphates with typical sizes in the range of 18–24 Å are formedat the mixing stage. Less basic Cu and Co cations are mainly octa-coordinated with both phosphate groups of those nanoparticles and citric acid molecules. At subsequent thermal treatment, Cu and Co cations are incorporated within Zr phosphate nanoparticles acquiring a low coordination approaching a tetrahedral one while rearranging the nuclei structure into that of a framework type. Removal of citric acid by heating under air at 200–300°C preserves the size of nanoparticles while their ordered stacking forms mesoporous structure with a narrow pore size distribution ∼ 50 Å and specific surface area up to 200 m2/g after calcination at 600°C. The binary phosphates promoted by a small amount of Pt were found to be effective catalysts of NOx selective reduction by decane in the oxygen excess not subjected to coking with a high and stable performance at high space velocities in the presence of steam.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alamo, J., Solid State Ionics 63–65, 547 (1993).Google Scholar
2. Goodenough, J.B., Hong, H.J., Kafalas, J.A., Mater. Res. Bull. 11, 173 (1976).Google Scholar
3. Corma, A., Chem. Rev. 97, 2373 (1997).Google Scholar
4. Ciesla, U., Schüth, F., Microporous and Mesoporous Mat. 27, 131 (1999).Google Scholar
5. Takahashi, R., Sato, S., Sodesawa, T., Kawakita, M., Ogura, K., J. Phys. Chem. B104, 12184 (2000).Google Scholar
6. Anpo, M., Che, M., Fubini, B., Garrone, E., Giamelo, E., Topics in Catalysis 8, 189 (1999).Google Scholar
7. Sadykov, V. A., Kuznetsova, T.G., Matyshak, V. A., Rozovskii, A. Ya., Ross, J.R.H., Chemistry for Sustainable Development 11, 249 (2003).Google Scholar
8. Sadykov, V. A., Pavlova, S. N., Zabolotnaya, G.V., Maximovskaya, R. I., Tsubulya, S. V., Burgina, E. B., Zaikovskii, V. I., Lunin, V. V., Roy, R. and Agrawal, D., Mat. Res. Innov. 2, 328 (1999).Google Scholar
9. Lever, A.P.B., “Inorganic Electronic Spectroscopy” (Elsevier, 1984) 319.Google Scholar
10. Khassin, A.A., Anufrienko, V.F., Ikorskii, V.N., Plyasova, L.M., Kustova, G.N., Larina, T.V., Yu. Molina, I., Parmon, V.N., Phys. Chem. Chem. Phys. 4, 4236 (2002).Google Scholar
11. Frolova, Y.V., Avdeev, V.I., Ph. Ruzankin, S., Zhidomirov, G.M., Fedotov, M.A., Sadykov, V.A., J. Phys. Chem. B, submitted.Google Scholar
12. Dedecek, J., Kaucky, D., Wichterlova, B., Microporous and Mesoporous Mat. 35–36, 483 (2000).Google Scholar
13. Dedecek, J., Bortnovsky, O., Vondrova, A., Wichterlova, B., J. Catal. 200, 160 (2001).Google Scholar
14. Yilmas, A., Bu, X., Kizilyalli, M., Kniep, R., Stucky, G.D., J. Solid State Chemistry 156, 281 (2001).Google Scholar