Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T01:25:36.342Z Has data issue: false hasContentIssue false

Synthesis of Mercury Cadmium Telluride Nanoparticles by Solvothermal Method

Published online by Cambridge University Press:  15 February 2011

RangaRao Arnepalli
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India
Viresh Dutta
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India
Get access

Abstract

Abstract:Mercury Cadmium Telluride (MCT) nanoparticles were synthesized by Solvothermal method for the first time. Mercury, Cadmium and Tellurium in compound/elemental form were added to Ethylenediamine (solvent) in the Teflon-Stainless-Steel autoclave along with a reducing agent. Different compositions of MCT were synthesized by varying the proportions of Hg and Cd to obtain Hg1-xCdxTe with x varying from 1 to 0. X-ray diffraction patterns revealed the formation of MCT nanoparticles with predominant cubic (111) phase. TEM studies revealed that the average particle size ranged from 10 to15 nm for different compositions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Herman, M. A. and Pessa, M., J. App. Phys. 57, 2671 (1985).Google Scholar
2 Spallart, M. N. and Tamizhani, G., Thin Solid Films, 169, 315 (1989).Google Scholar
3 Ramiro, J., Garcia, E., Camarereo, J. Mater. Sci. 2047 (1996).Google Scholar
4 Harrison, M. T. et al. , Pure Appl. Chem., 72, No. 1-2, 295 (2000).Google Scholar
5 Mcdonald, S. A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E. J. D., Levina, L. Sargent, E.H., Nature. Mater. Published online: 9 January 2005.Google Scholar
6 Alivisatos, A. P., Science 271, 933 (1996).Google Scholar
7 Peng, X. G., Manna, L., Yang, W. D., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A. P., Nature 404, 59 (2000).Google Scholar
8 Huynh, W. U., Dittmer, J. J., and Alivisatos, A. P., Science 295, 2425 (2002).Google Scholar
9 Rao, C. N. R., Deepak, F. L., Gundiah, Gautam, and Govindaraj, A., Progr. Solid State Chem. 31, 5 (2003).Google Scholar
10 Dai, Zu Rong, Pan, Zheng Wei, and Wang, Z. L., Adv. Funct. Mater. 13, 924 (2003).Google Scholar
11 Harrison, M. T., Kershaw, S. V., Burt, M. G., Eychmuller, A., Weller, H., Rogach, A. L., Materials Science and Engineering B,69-70, 355 (2000).Google Scholar
12 Rogach, A. L., Kershaw, S. V., Burt, M., Harrison, M. T., Kornowski, A., Eychmuller, A., Weller, H., Adv. Mater. 11, 552 (1999).Google Scholar
13 Rajamathi, M. and Seshadri, R., Curr. Opinion. Sol. Sta. & Mater. Sci. 6, 337 (2002) and the references therein.Google Scholar
14 Dutta, V., Shukla, Ruchi, Parihar, Somendra Singh, Rao, A. Ranga and Vamsi, K. Krishna proceedings of National Symposium on the Nano structured materials (NSNM) December-2002, P-36, IIT Delhi, New Delhi.Google Scholar
15 Dutta, Viresh and Arnepalli, Rang Rao,(Patent pending)Google Scholar
16 Li, Yadong, Ding, Y., Liao, H., Qian, Y., J. Phys & Chem. Sol. 60, 965 (1999).Google Scholar
17 Li, Y., Liao, H., Ding, Y., tan, Y., Zhang, Y., Qian, Y., Inorg. Chem. 38, 1382 (1999).Google Scholar
18 Yang, J., Yanga, X. L., Yu, S. H., Liu, X. M., Qian, Y. T., Materials Science and Engineering B 35, 1509 (2000).Google Scholar