Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T23:46:03.205Z Has data issue: false hasContentIssue false

Synthesis of InGaZnO4 Colloids and Its Application in a TFT Device

Published online by Cambridge University Press:  15 March 2011

Chen-Yu Kao
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013
Kan-Sen Chou
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013
Y.H. Yang
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013
S.S. Yang
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013
Get access

Abstract

The deposition of amorphous InGaZnO4 (a-IGZO) semiconductor film, via a sputtering process, has been demonstrated in the literature. In this paper, we present a solution method as an alternative to obtain this semiconducting film. The dispersible IGZO colloids is formed first by co-precipitation of precursors, followed by hydrothermal treatment at 200°C for 1 hour and using CMC as the dispersion agent. The crystalline colloid would become amorphous when it was heated at above 250°C. The TFT structure was made by growing a dielectric silica layer using the CVD method, a metal layer using the sputtering method, and an active IGZO layer using the solution method. This device exhibits low operating voltage, the mobility is about 2cm2V−1s−1 and the Ion/Ioff ratio is 104. Further improvement in processing is needed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hines, D.R., Ballarotto, V. W., Williams, E. D., Shao, Y. and Solin, S. A., J. Appl. Phys. 101, 024503 (2007).Google Scholar
2. Subramanian, V., Chang, P. C., Lee, J. B., Molesa, S. E. and Volkman, S. K., IEEE, 93, 1330 (2005).Google Scholar
3. Subramanian, V., Chang, P. C., Lee, J. B., Molesa, S. E. and Volkman, S. K., IEEE Transactions on Components and packaging Technologies, 28, 742 (2005).Google Scholar
4. Sun, B. and Sirringhaus, H., Nano Letters, 5, 2408 (2005).Google Scholar
5. Lin, Y., Gundlach, D. J., Nelson, S.F., and Jackson, T.N., IEEE Transitions on Electron Devices, 44, 1325 (1997).Google Scholar
6. Sheraw, C.D., Zhou, L., Huang, J. R., Gundlach, D. J., Jackson, T. N., Kane, M. G., Hill, I. G., Hammond, M. S., Campi, J., Greening, B. K., Francl, J., and West, J., Appl. Phys. Lett. 80, 1088 (2002).Google Scholar
7. Edre, F., Klauk, H., Halik, M., Zschieschang, U., Schmid, G., and Dehm, C., Appl. Phys. Lett. 84, 2673 (2004).Google Scholar
8. Kim, Y.H., Moon, D. G., and Han, J. I., IEEE Electron Device Letters, 25, 702 (2004).Google Scholar
9. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H., Nature, 432, 488 (2004).Google Scholar
10. Nomura, K., Takagi, A., Kamiya, T., Ohta, H., Hirano, M., and Hosono, H., Jap. J. Appl. Phys., 45, 4303 (2006).Google Scholar
11. Yabuta, H., Sano, M., Abe, K., Aiba, T., Den, T., Kumomi, H., Nomura, K., Kamiya, T., and Hosono, H., Appl. Phys. Lett., 89, 112123 (2006).Google Scholar
12. Nomura, K., Takagi, A., Kamiya, T., Ohta, H., Hirano, M., and Hosono, H., Physical review B 75, 035212 (2007).Google Scholar
13. Kim, M., Jeong, J. H., Lee, H. J., Ahn, T. K., Shin, H. S., Park, J. S., Jeong, J. K., Mo, Y. G., and Kim, H. D., Appl. Phys. Lett. 90, 212114 (2007).Google Scholar
14. Jeong, J.K., Jeong, J. H., Yang, H. W., Park, J. S., Mo, Y. G., and Kim, H. D., Appl. Phys. Lett. 91, 113505 (2007).Google Scholar
15. Oh, B.Y., Jeong, M.C., Ham, M.H. and Myoung, J.M., Semicond. Sci. Technol., 22, 608 (2007).Google Scholar