Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:41:24.961Z Has data issue: false hasContentIssue false

Synthesis of Fullerene by Spark Plasma Sintering and Thermomechanical Transformation of Fullerene Into Diamond on Fe-C Composites

Published online by Cambridge University Press:  01 February 2011

Francisco C. Robles-Hernández*
Affiliation:
University of Houston, Engineering Technology, Houston, TX, USA 77204
H. A. Calderon*
Affiliation:
Departamento Ciencia de Materiales, ESFM-IPN, Mexico DF
*
Emails: [email protected]
Emails: [email protected]
Get access

Abstract

In this work, results are presented regarding the characterization of nanostructured Fe matrix composites reinforced with fullerene. The fullerene is a mix of 15 wt.%C60, 5 wt.%C70 and 80 wt.% soot that is the product of the primary synthesis of C60. The composite has been produced by means of mechanical alloying and sintered by Spark Plasma Sintering (SPS). The characterization methods include XRD, SEM and TEM. The C60 and C70 withstand mechanical alloying, SPS, and thermomechanical processing and act as a control agent during mechanical alloying. The results show that the mechanically alloyed and SPS product is a nanostructured composite. A larger amount of C60 is found in the sintered composite than in the original fullerene mix, which is attributed to an in-situ synthesis of C60 during the SPS process. The synthesis of C60 is presumably assisted by the catalytic nature of Fe and the electric field generated during the SPS process. In order to study the effect of high temperature, high strain, high heating and cooling rates on C60, the composite is subjected to a thermomechanical processing; demonstrating that some of the C60 resists the above described environment and some of it partially transforms into diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harris, P. J. F., 1st ed. (Cambridge, Cambridge University Press, 1999).Google Scholar
2. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R. F. and Smalley, R. E., Nature. 318, 162 (1985).Google Scholar
3. Iijima, S. Nature. 354, 56 (1991).Google Scholar
4. Ru, Q., Okamoto, M., Kondo, Y., Takayanagi, K. Chem. Phys. Lett. 259, 425, (1996).Google Scholar
5. Ugarte, D. Nature. 359, 707 (1992).Google Scholar
6. Terrones, H., Terrones, M. J. Phys. Chem. Solids. 58, 1789 (1997).Google Scholar
7. Krätschmer, W., Lamb, L.D., Fostiropoulos, K. and Huffman, D. R., Nature. 347, 354 (1990).Google Scholar
8. Umemoto, M., Masuyama, K. and Raviprasad, K. Mater, Sci. Forum, 47, 235 (1997).Google Scholar
9. Robles Hernandez, F. C., “Producción y Caracterización de Compósitos Metal-C (donde; Metal=Al o Fe y C=grafito o fullereno) Obtenidos a Partir de Polvos de Aleado Mecánico”, MSc. Thesis, Instituto Politecnico Nacional, Mexico, 1999.Google Scholar
10. Garibay-Febles, V., Calderon, H. A., Robles-Hernández, F. C., Umemoto, M., Masuyama, K., Cabañas-Moreno, J. G., Mats. and Manufac. Proc. 15, 547, (2000).Google Scholar
11. Liu, Z.G. et al., J. of Phys. and Chem. of Sol. 61 1119 (2000).Google Scholar
12. Díaz Barriga Arceo, L. et al., J. Alloys Compd. 434–435, 799 (2007).Google Scholar
13. Díaz Barriga-Arceo, L. et al., J. Phys.: Condens. Matter, 16, S2273 (2004).Google Scholar
14. Benjamin, J. S., Mater. Sci. Forum. 88–90, 1 (1992).Google Scholar
15. Gilman, P.S. and Benjamin, J.S., Ann. Rev. Mater. Sci. 13, 279 (1983).Google Scholar
16. Suryanarayana, C. Prog. Mater Sci. 46, 1, (2001).Google Scholar
17. Guerrero-Paz, J. et al., Mats. Sci. Forum, 360–362, 317 (2001).Google Scholar
18. Hafner, J. H., Chem. Phys. Lett. 296, 195 (1998).Google Scholar
19. Dai, H. et. al., Chem. Phys. Lett. 260, 471 (1996).Google Scholar
20. Gou, T. et. al., Chem. Phys. Lett. 243, 49 (1995).Google Scholar
21. Zhou, W. et. al., Chem. Phys. Lett. 350, 6 (2001).Google Scholar
22. Gogotsi, Y., Naguib, N., Libera, J. A., Chem. Phys. Lett. 365, 354 (2002).Google Scholar
23. Tsang, S. C., Chen, Y. K., Harris, P. J. F., Green, M. L. H., Nature. 372, 159 (1994).Google Scholar
24. Tsang, S. C., Harris, P. J. F., Green, M. L. H., Nature. 362, 520 (1993).Google Scholar
25. Sun, L. et al., Science. 312, 1199, (2006).Google Scholar
26. Qian, L. et. al. Nano Lett., 8, 4539 (2008).Google Scholar
27. Robles Hernandez, F. C., Calderon, H. A., under review, submitted August 2009.Google Scholar
28. Ajayan, P. M., Tous, J. M., Nature. 447, 1066 (2007).Google Scholar
29. Kim, S. N., Rusling, J. F., Papadimitrakopoulos, F. Adv. Mater. 19, 3214 (2007).Google Scholar
30. Hulbert, D. M., Anders, A., Dudina, D. V., Andersson, J., Jiang, D., Unuvar, C., Anselmi-Tamburini, U., Lavernia, E. J., Mukherjee, A. K., J. Appl. Phys. 104, 033305 (2008).Google Scholar
31. Hulbert, D. M. et al., Scripta Materialia. 60, 835 (2009).Google Scholar
32. Shen, J., Zhang, F. M., Sun, J. F., Zhu, Y. Q., McCartney, D. G., Nanotechnol. 17, 2187 (2006).Google Scholar
33. Cullity, B. D., Elements of X-Ray Diffraction, 1st ed. (Asddison-Wesley Puublishing Company, Inc., United States of America, 1956).Google Scholar
34. Nikolussi, M. et al., Scr. Mater. 59, 814 (2008).Google Scholar