Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:19:24.572Z Has data issue: false hasContentIssue false

Synthesis of Ferroelectric Liquid Crystalline Polymers by Ring Opening Polymerization

Published online by Cambridge University Press:  10 February 2011

C. S. Hsu
Affiliation:
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC.
C. J. Lee
Affiliation:
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC.
Get access

Abstract

The synthesis of two series of side-chain liquid crystalline polyoxetanes and polyoxiranes containing 4-alkanyloxybiphenyl-4′ -yl (2S,3S)-2-chloro-3-methylvalerate side groups is presented. Differential scanning calorimetry, polarizing optical microscopy, and X-ray diffractometry reveal smectic mesomorphism for all obtained polymers. Most of the prepared polyoxetanes present smectic A and chiral smectic C phases. The polyoxetane containing tweleve methylene units in the spacer is the only one showing two enantiotropic smectic A and B phases. All of the obtained polyoxiranes display two enantiotropic smectic A and B phases. Although the polyoxetane and polyoxirane backbones are more flexible than the polymethacrylate backbone, side-chain crystallization do not occur in any of the synthesized polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McArdle, C. B.. in Side-Chain Liquid Crystal Polymers, edited by McArdle, C. B., (Blackie: Glasgow and London, 1989), p. 3.Google Scholar
2. Percec, V. and Tomazos, D., Adv. Mater. 4, 549(1992).Google Scholar
3. Tuan, P. A., Kostromin, S. G. and Shibaev, V. P.., Polym. Bull. 29, 49 (1992)Google Scholar
4. Fujishiro, K. and Lenz, R. B., Polym. Bull. 12, 561 (1992); A. D. Pajerski,Google Scholar
5. Kawakami, Y., Takahashi, K., Polym Bull. 25, 439 (1991).Google Scholar
6. Kawakami, Y., Takahashi, K. and Hibino, H., Macromolecules 24, 4531 (1991).Google Scholar
7. Kawakami, Y., Takahashi, K., Nishiguchi, S. and Toida, K., Polym. Int. 31 35 (1993).Google Scholar
8. Pugh, C. and Schrock, R. R., Macromolecules. 25, 6593 (1992); Z. KomiyaGoogle Scholar
9. Komiya, Z., Schrock, R. R., Macromolecules. 26 1387 (1993 Google Scholar
10. Kim, S. H., Lee, H. J., Jin, S. H., Cho, H. N., and Choi, S. K., Macromolecules. 26, 846 (1993).Google Scholar
11. Clark, N. A. and Lagerwall, S. T., Appl. Phys. Lett., 36, 899 (1980).Google Scholar
12. Lagerwall, S. T. and Dahl, I., Mol. Cryst. Liq. Cryst. 114, 151 (1984).Google Scholar
13. Hsu, C. S., Lin, J. H., Chou, L. R. and Hsiue, G. H., Macromolecules 25, 7126 (1992).Google Scholar
14. Hsu, C. S., Shih, L. J. and Hsiue, G. H., Macromolecules 26, 3161 (1993).Google Scholar
15. Hsiue, G. H., Hsieh, P. R. and Hsu, C. S, Polym Bull. 33, 159 (1994).Google Scholar
16. Fu, S. J., Bimbaum, S. M., and Greenstein, J. P., J. Am. Chem. Soc. 76, 6054 (1954).Google Scholar
17. Lu, Y. H. and Hsu, C. S., Macromoecules. 28, 1673 (1995).Google Scholar