Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:32:33.290Z Has data issue: false hasContentIssue false

Synthesis of CuInS2-ZnS Alloyed Nanorods and Hybrid Nanostructures

Published online by Cambridge University Press:  28 August 2015

Jie Li
Affiliation:
Energy and Semiconductor Research Laboratory, Department of Physics, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
Jürgen Parisi
Affiliation:
Energy and Semiconductor Research Laboratory, Department of Physics, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
Joanna Kolny-Olesiak
Affiliation:
Energy and Semiconductor Research Laboratory, Department of Physics, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
Get access

Abstract

Alloyed nanorods and hybrid nanostructures composed of CuInS2 and ZnS were synthesized by heating-up and hot-injection procedures. The synthesis starts with the formation of copper sulfide seeds, which are subsequently converted to copper sulfide – copper indium zinc sulfide hybrid nanostructures, by incorporation of indium and zinc ions. The fraction of ZnS within the alloyed material could be controlled by the amount of the Zn precursor in the reaction solution. In reactions with higher zinc precursor concentrations, at longer reaction times L-shaped hybrid nanostructures are formed of CuInS2-ZnS alloy and ZnS. An additional injection of the Zn-precursor into the reaction solution results in the formation of U-shaped hybrid nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldakov, D., Lefrançois, A., and Reiss, P., J. Mater. Chem. C 1, 3756 (2013).CrossRefGoogle Scholar
Zhao, Y. and Burda, C., Energy Environ. Sci. 5, 5564 (2012).CrossRefGoogle Scholar
Kolny-Olesiak, J. and Weller, H., ACS Appl. Mater. Interfaces 5, 12221 (2013).CrossRefGoogle Scholar
Kolny-Olesiak, J., CrystEngComm 16, 9381 (2014).CrossRefGoogle Scholar
Pan, D., Weng, D., Wang, X., Xiao, Q., Chen, W., Xu, C., Yang, Z., and Lu, Y., Chem. Commun. 28, 4221 (2009).CrossRefGoogle Scholar
Feng, J., Sun, M., Yang, F., and Yang, X., Chem. Commun. 47, 6422 (2011).CrossRefGoogle Scholar
Zhang, W. and Zhong, X., Inorg. Chem. 50, 4065 (2011).CrossRefGoogle Scholar
Wang, X., Pan, D., Weng, D., Low, C.Y.C.-Y., Rice, L., Han, J., and Lu, Y., J. Phys. Chem. C 114, 13406 (2010).Google Scholar
Nakamura, H., Kato, W., Uehara, M., Nose, K., Omata, T., Otsuka-Yao-Matsuo, S., Miyazaki, M., and Maeda, H., Chem. Mater. 18, 3330 (2006).CrossRefGoogle Scholar
De Trizio, L., Prato, M., Genovese, A., Casu, A., Povia, M., Simonutti, R., Alcocer, M.J.P., Andrea, C.D., Tassone, F., and Manna, L., Chem. Mater. 24, 24002406 (2012).CrossRefGoogle Scholar
Tang, X., Cheng, W., Choo, E.S.G., and Xue, J., Chem. Commun. 5217 (2011).Google Scholar
Kruszynska, M., Borchert, H., Parisi, J., and Kolny-Olesiak, J., J. Am. Chem. Soc. 132, 15976 (2010).CrossRefGoogle Scholar
Connor, S.T., Hsu, C.-M., Weil, B.D., Aloni, S., and Cui, Y., J. Am. Chem. Soc. 131, 4962 (2009).CrossRefGoogle Scholar
Chang, J.-Y. and Cheng, C.-Y., Chem. Commun. 47, 9089 (2011).CrossRefGoogle Scholar
Popa, N., Appl, J.. Crystallogr. 31, 176 (1998).CrossRefGoogle Scholar
Li, J., Bloemen, M., Parisi, J., and Kolny-Olesiak, J., ACS Appl. Mater. Interfaces 6, 20535 (2014).CrossRefGoogle Scholar
Kruszynska, M., Parisi, J., and Kolny-Olesiak, J., Zeitschrift Für Naturforsch. 69a, 446 (2014).Google Scholar
Kruszynska, M., Borchert, H., Bachmatiuk, A., Rümmeli, M.H., Buechner, B., Parisi, J., and Kolny-Olesiak, J., ACS Nano 6, 5889 (2012).CrossRefGoogle Scholar
Wang, L.-W., Phys. Rev. Lett. 108, 085703 (2012).CrossRefGoogle Scholar
Lu, X., Zhuang, Z., Peng, Q., and Li, Y., CrystEngComm 13, 4039 (2011).CrossRefGoogle Scholar
Li, Q., Zhai, L., Zou, C., Huang, X., Zhang, L., Yang, Y., Chen, X., and Huang, S., Nanoscale 5, 1638 (2013).CrossRefGoogle ScholarPubMed
Lu, X., Zhuang, Z., Peng, Q., and Li, Y., Chem. Commun. 47, 3141 (2011).CrossRefGoogle Scholar