Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:44:06.412Z Has data issue: false hasContentIssue false

Synthesis of Conjugated Polymers by Vapor Deposition Polymerization

Published online by Cambridge University Press:  10 February 2011

Chain-Shu Hsu
Affiliation:
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
Ting-Li Lin
Affiliation:
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
Get access

Abstract

The synthesis of poly(2,5-thienylene vinylene) and poly(4,7-thianaphthene) by vapor deposition polymerization is presented. 2,5-Di(bromomethyl)thiophene was subjected to vapor phase pyrolysis at 550°C to form a reactive intermediate. Upon condensation, the reactive intermediate polymerized spontaneously at a temperature higher than -25°C to produce poly(2,5-thienylene vinylene). The obtained poly(2,5-thienylene vinylene)s were fractionated into THF soluble and insoluble fractions. The number average molecular weights of the THF soluble fractions range from 1500 to 4000 as determined by GPC measurements. The obtained polymer shows no glass transition and melting point on the DSC scans. Doping of a poly(2,5-thienylene vinylene) film with I2 vapor led to a conductivity of 1 × 10−4 S c−1. In the second part of this study, 2,3-diethynylthiophene was subjected to vapor phase pyrolysis at 300°C to yield a reactive intermediate, 4,7- dehydrothianaphthene. Upon condensation, the obtained 4,7-dehydrothianaphthenene was polymerized spontaneously at a temperature higher than -25°C to produce poly(4,7-thianaphthene). The obtained poly(4,7-thianaphthene) was insoluble in common laboratory solvents and shows also no melting point and glass transition on the DSC scans.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L. and Holmes, A. B., Nature 347, 539 (1990).Google Scholar
2. Kaino, T., Kubodera, K., Kobayashi, H., Kurihara, T., Saito, S., Tsutsui, T., Tokito, S. and Murata, H., Appl. Phys. Lett. 53, 2002 (1988).Google Scholar
3. Jen, K. J., Eckardt, H., Jow, T. R.., Shacklette, L. W. and Elsenbauner, R. L., J. Chem. Soc. Chem. Commun. 1988, 215.Google Scholar
4. Blohm, M. L., Pickett, J. E. and Van Dort, P. C., Macromolecules 26, 2704 (1993).Google Scholar
5. Murase, I., Ohnishi, T., Noguchi, T. and Hirooka, M., Synth. Met. 17, 639 (1987).Google Scholar
6. Agkari, S. H., Roughooputh, S. D. D. V. and Wudl, F., Synth. Met. 17, 639 (1989).Google Scholar
7. Braun, D. and Heeger, A. J., Appl. Phys. Lett. 58, 1982 (1992).Google Scholar
8. Westweber, H., Greiner, A., Lemmer, U., Mahrt, R. F., Richert, R., Heitz, W. and Bassler, H., Adv. Mater. 4, 661 (1992).10.1002/adma.19920041008Google Scholar
9. Gorharn, W. F., J. Polym. Sci. 4, 3027 (1966).Google Scholar
10. Staring, E. G. J., Braun, D., Rikken, G. L. J. A., Demandt, R. J. C. E., Kessener, Y. A. R. R., Bauwmans, M. and Broer, D., Synth. Met. 67, 71 (1994).10.1016/0379-6779(94)90013-2Google Scholar
11. Schafer, O., Greiner, A, Pommerehne, J., Guss, W., Vestweber, H., Tak, H. Y., Bassler, H., Schmidt, C., Lussem, G., Schartel, B., Stumpflen, V., Wendorff, J. H., Spiegel, S., Moller, C. and Spiess, H. W., Synth. Met. 82, 1 (1996).Google Scholar
12. Lu, Y. H., Hsu, C. S., Chou, C. H. and Chou, T. H., Macromolecules 29, 5546 (1996).Google Scholar
13. Jen, K. Y., Maxfield, M., Shacklette, L. W. and Elsenbaumer, R. L., J. Chem. Soc. Chem. Commun, 1987, 309.Google Scholar
14. Takeshita, M. and Tashiro, M., J. Org. Chem. 56, 2837 (1991).Google Scholar