Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:06:19.044Z Has data issue: false hasContentIssue false

Synthesis of CdO Nanoneedles for Photonic and Sensing Applications

Published online by Cambridge University Press:  15 February 2011

Xiaolei Liu
Affiliation:
Dept. of E.E.Electrophysics, University of Southern California, Los Angeles, CA 90089, U.S.A.
Chao Li
Affiliation:
Dept. of E.E.Electrophysics, University of Southern California, Los Angeles, CA 90089, U.S.A.
Song Han
Affiliation:
Dept. of E.E.Electrophysics, University of Southern California, Los Angeles, CA 90089, U.S.A.
Chongwu Zhou
Affiliation:
Dept. of E.E.Electrophysics, University of Southern California, Los Angeles, CA 90089, U.S.A.
Get access

Abstract

Single-crystalline needle-shaped CdO nanostructures were synthesized using a chemical vapor deposition method and characterized using a variety of techniques. Devices consisting of individual CdO nanoneedles were fabricated and high conductance as well as high carrier concentrations was observed. The temperature dependence of the conductance revealed thermal excitation as the dominating transport mechanism. Our devices exhibited good sensitivity to both infrared light and diluted NO2 gas, indicating potential applications as infrared photo-detectors and toxic gas sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lieber, C. M., Scientific American 285, 58 (2001).Google Scholar
2 Huang, Y.,Duan, X., Cui, Y., Lauhon, L. J., Kim, K.H., Lieber, C.M., Science 294, 1313 (2001).Google Scholar
3 Liu, X., Lee, C., Han, J., and Zhou, C., Appl. Phys. Lett. 79, 3329 (2001).Google Scholar
4 Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C., Science 294, 1317 (2001).Google Scholar
5 Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., and Dai, H., Science 287, 622 (2000).Google Scholar
6 Cui, Y., Wei, Q., Park, H., and Lieber, C. M., Science 293, 1289 (2001).Google Scholar
7 Li, C., Zhang, D., Liu, X., Han, S., Tang, T., Han, Jie and Zhou, C. (To be published).Google Scholar
8 Ginley, D. S., Bright, C., MRS Bull. 25, 58 (2000).Google Scholar
9 Coutts, T. J., Young, D. L., Li, X., MRS Bull. 25, 15 (2000).Google Scholar
10 Köhler, H., Solid State Commun. 11, 1687 (1972); H. Finkenrath, Z. Angew. Phys. 16, 503 (1964).Google Scholar
11 Wang, Y.W., Liang, C. H., Wang, G. Z., Gao, T., X. Wang, S., Fan, J. C., Zhang, L. D., J.Mater. Sci. Lett. 20, 1687 (2001).Google Scholar
12 Pan, Z. W., Dai, Z. R., and Wang, Z. L., Science 291, 1947 (2001).Google Scholar
13 Koparanova, N., Zlatev, Z., Genchev, D., and Popovich, G., J. Mater. Sci. 29, 103 (1994).Google Scholar
14 G, R. W.. Wyckoff, Crystal Structures (Interscience, New York, 1968), Vol. 1, p. 86.Google Scholar
15 Zhao, Z., Morel, D. L., Ferekides, C. S., Thin Solid Films 413, 203 (2002).Google Scholar
16 Li, X., Young, D. L., Moutinho, H., Yan, Y., Narayanswam, C., Gessert, T. A., and Coutts, T. J., Electrochem. Solid St. 4, C43 (2001).Google Scholar
17 Zhou, C., Kong, J., and Dai, H., Appl. Phys. Lett. 76, 1597 (2000).Google Scholar
18 Shimizu, Y. and Egashira, M., MRS Bull. 24, 18 (1999).Google Scholar