Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:10:37.175Z Has data issue: false hasContentIssue false

Synthesis of Cadmium and Lead Telluride Nanoparticles: Examples of Oriented attachment Growth Mechanism

Published online by Cambridge University Press:  14 July 2014

Neerish Revaprasadu*
Affiliation:
Department of Chemistry, University of Zululand, Private bag X1001, KwaDlangezwa, 3880. E-mail: [email protected]
Get access

Abstract

The synthesis of hexadecylamine capped (HDA) CdTe and PbTe via a simple hybrid solution based high temperature route is described. In this method the tellurium is first reduced to form the telluride salt followed by reaction with the metal salt and finally thermolysis in a coordinating solvent. The metal salt and reaction temperature played an important role in the morphology and growth mechanism of the particles. The CdTe particles where in the form of rods and spheres whereas the PbTe nanoparticles were in the form of nanowires. The oriented attachment mechanism is proposed for the growth of elongated particles under certain reaction conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gaponik, N.P., Talapin, D.V., Rogach, A.L., and Eychmuller, A., J. Mater. Chem.,10, 163(2000).CrossRefGoogle Scholar
Huynh, W.U., Dittmer, J.J. and Alivisatos, A.P., Science, 295, 2425 (2002).CrossRefGoogle Scholar
Lee, J., Govorov, A. O. and Kotov, N. A., Nano Lett. 4, 2323 (2004).CrossRefGoogle Scholar
Harman, T.C., Taylor, P.J., Walsh, M.P. and Laforge, B.E., Science, 297, 2229 (2002).CrossRefGoogle Scholar
Ostwald, W.Z., Phys. Chem., 22, 289 (1897).Google Scholar
Penn, R.L and Banfield, J.F, Science, 281, 969 (1998).CrossRefGoogle Scholar
Pradhan, N., Xu, H. and Peng, X.G., Nano. Lett. 6, 720 (2006).CrossRefGoogle Scholar
Tang, Z.Y, Kotov, N.A. and Giersig, M., Science, 297, 237 ( 2002).CrossRefGoogle Scholar
Cho, K.S., Talapin, D.V., Graschler, W. and Murray, C.B., J. Am. Chem. Soc., 127, 7140 (2005).CrossRefGoogle Scholar
Maseko, N.N, Revaprasadu, N., Rajasekhar Pullabhotla, V.S.R., Ramasamy, K. and O’ Brien, P. Mater. Lett., 64,1037 ( 2010).CrossRefGoogle Scholar
Ziqubu, N., Ramasamy, K., Revaprasadu, N., Rajasejhar Pullabhotla, V.S.R, O’Brien, P., Chem. Mater., 22, 3817 (2010).CrossRefGoogle Scholar
Xu, F., Ma, X., Gerlein, L.F., Sylvain, G.C., Nanotechnology, 22, 265604 (2011).CrossRefGoogle Scholar
Gong, S. M., Kirkeminde, A. and Ren, S., Sci. Rep., 3, 2092 (2013).CrossRefGoogle Scholar
Iacono, M.M F., Palencia, C., Geweke, J., Coderch, M. D., Fittschen, U.E.A., Gallego, J.M., Otero, R., Juárez, B.H. and Klinke, C., Chem. Mater, 26, 1813 ( 2014).Google Scholar