Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T05:38:13.240Z Has data issue: false hasContentIssue false

Synthesis of C and CNx Nanotubes, Using the Aerosol Method

Published online by Cambridge University Press:  15 February 2011

M. Glerup*
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR5581), Université Montpellier II, Place E. Bataillon, 34095 Montpellier, France
M. Castignolles
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR5581), Université Montpellier II, Place E. Bataillon, 34095 Montpellier, France Laboratoire d'Etude des Microstructures, ONERA-CNRS (UMR104), 29, av. de la Division Leclerc, BP72, 92322 Châtillon, France
M. Holzinger
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR5581), Université Montpellier II, Place E. Bataillon, 34095 Montpellier, France
H. Kanzow
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR5581), Université Montpellier II, Place E. Bataillon, 34095 Montpellier, France New address: ContiTech Antriebsysteme, 30165 Hannover, Germany
A. Loiseau
Affiliation:
Laboratoire d'Etude des Microstructures, ONERA-CNRS (UMR104), 29, av. de la Division Leclerc, BP72, 92322 Châtillon, France
P. Bernier
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR5581), Université Montpellier II, Place E. Bataillon, 34095 Montpellier, France
*
*corresponding author: [email protected]
Get access

Abstract

Here we will present the state-of-the-art of the aerosol synthesis method. We demonstrate the reliability of this method by showing that the method can be successfully used for the synthesis of C and CNx multi walled nanotubes. For characterization, scanning- (SEM) and high resolution transmission electron microscopy (HRTEM) imaging have been carried out. The N/C ratio is determined using Electron Energy Loss Spectroscopy (EELS) combined with TEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature, 354, 56 (1991)Google Scholar
2. Hassanien, A., Tokumoto, M., Kumazawa, Y., Kataura, H., Maniwa, Y., Suzuki, S. and Achiba, Y., Appl. Phys. Lett., 73, 3839 (1998)Google Scholar
3. Carroll, D.L., Redlich, Ph., Blase, X., Charlier, J.-C., Ajayan, S.P.M., Roth, S. and Rühle, M., Phys. Rev. Lett. 81, 2332 (1998)Google Scholar
4. Yokomichi, H., Matoba, M., Fukuhara, T., Sakima, H., Sakai, F. and Maezawa, K., Phys. Stat. Sol. B, 207 R1 (1998)Google Scholar
5. Glerup, M., Kanzow, H., Castignolles, M., Almairac, R., Bernier, P., Chem. Phys. Lett. -submitted Google Scholar
6. Glerup, M., Castignolles, M., Holzinger, M., Hug, G., Loiseau, A. and Bernier, P., Chem. Comm. - submitted Google Scholar
7. Castignolles, M., Loiseau, A., Bernier, P., Glerup, M., submitted to these proceedings Google Scholar
8. Trassobares, S., Stéphan, O., Colliex, C., Hsu, W.K., Kroto, H.W. and Walton, D.R.M., J. Chem. Phys., 116(20), 8966 (2002)Google Scholar
9. Mayne, M., Grobert, N., Terrones, M., Kamalakaran, R., Rühle, M., Kroto, H.W., Walton, D.R.M., Chem. Phys. Letters, 338, 101 (2001)Google Scholar