Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:38:00.387Z Has data issue: false hasContentIssue false

Synthesis of an Inorganic/Organic Network Polymer by the Hydrolysis/Condensation of Poly(Diethoxysilylenemethylene) and Its Pyrolytic Conversion to Silicon Oxycarbide

Published online by Cambridge University Press:  10 February 2011

Q. Liu
Affiliation:
Chemistry Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
T. Apple
Affiliation:
Chemistry Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Z. Zheng
Affiliation:
Chemistry Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
L. V. Interrante
Affiliation:
Chemistry Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Get access

Abstract

A linear, ethoxy-substituted polycarbosilane has been prepared by ring-opening polymerization of 1,1,3,3-tetraethoxy-1,3-disilacyclobutane. After hydrolysis, condensation and drying, the obtained gel was pyrolyzed under nitrogen to give a silicon oxycarbide glass. The gel and its pyrolysis chemistry were characterized by elemental analysis, thermogravimetric analysis, 29Si and 13C MAS NMR, FTIR and mass spectrometric analysis of the gaseous pyrolysis products. The conversion of the [SiOCH2]n network, which has a nearly pure SiC2O2 micro environment at the outset, into a silicon oxycarbide that contains a full distribution of the five possible SiC4−xOx environments occurs between 600 and 1000°C. This suggests the occurrence of redistribution reactions involving the exchange of Si-O and Si-C bonds during the pyrolysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Zhang, H. and Pantano, C. G., Mater. Res. Soc. Symp. Proc., 271, 783 (1992).Google Scholar
[2]. Renlund, G. M., French Patent 2,647,777, 1990.Google Scholar
[3]. Burns, G. T., Taylor, R. B., Xu, Y., Zangvil, A. and Zank, G. A., Chem. Mater., 4, 1313(1992).Google Scholar
[4]. Hurwitz, F. I., Farmer, S. C. and Terepka, F. M., J. Mater. Sci., 26, 1247(1991).Google Scholar
[5]. Kasemann, R., Schmidt, H. and Wintrich, E., Mater. Res. Soc. Symp. Proc., 346, 915(1994).Google Scholar
[6]. Shi, W., Ph.D Thesis, Rensselaer Polytechnic Institute, 1995.Google Scholar
[7]. Renlund, G. M., Prochazka, S. and Doremus, R. H., J. Mater. Res. 6, 2716(1991);6, 2723(1991).Google Scholar
[8]. a) White, D. G., Oleff, S. M., D.Boyer, R., Budinger, P. A. and Fox, J. R., Adv. Cerm. Mater. 2(1), 45(1987); 2(1), 53(1987); b) F. Babonneau, L. Bois and J. Livage, J. Non-Cryst. Solids 1992, 147&148, 280; c) E. Breval, M. Hammond and C. G. Pantano, J. Am. Ceram. Soc. 77(11), 3012(1994); d) F. Babonneau, K. Thorne and J. D. Mackenzie, Chem. Mater. 1, 554(1989)Google Scholar
[9]. Babonneau, F., Bois, L., Yang, C-Y. and Interrante, L. V., Chem. Mater. 6, 51(1994)Google Scholar
[10]. Babonneau, F., in Applications of Organometallic Chemistry in the Preparation and Processing of Advanced Materials, edited by Harrod, J. F. and Laine, R. M. (Kluwer Academic Publishers, The Netherlands, 1995) p. 103.Google Scholar
[11]. Shen, Q. and Interrante, L. V., Preprints of 35th IUPAC international Symposium on Macromolecules, Akron, USA, 345(1994); Polym. prepr.36(2), 378(1995)Google Scholar
[12]. Wu, H-J. and Interrante, L. V., Chem. Mater. 1, 564(1989); Macromolecules, 25, 1840(1992)Google Scholar
[13]. Corriu, R. J. P., Leclercq, D., Mutin, P. H. and Vioux, A., J. Mater. Sci. 30, 2313 (1995)Google Scholar