No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
A novel biopolymer derived from diallyl sucrose (A2S) and dithiotreitol (DTT) was prepared by means of Thiol-Ene Photopolymerization. A2S was prepared by alkylating the sucrose with allyl bromide, using water as solvent. After purification by column chromatography, a fraction (F2A2S) with 94% diallyl sucrose (A2S), 4 % of triallyl sucrose (A3S) and 2 % of monoallyl sucrose (A1S) was obtained. This fraction was subsequently photopolymerized with Dithiothreitol (DTT) which is a difunctional thiol. Kinetics of photopolymerization were determined by means of Real-Time Infrared spectroscopy. It was found that the photocurable formulation with DTT and F2A2S, polymerized rapidly in the presence and absence of a photoinitiator, at low intensities of UV light. After bulk polymerization, a flexible material with high elastic modulus and a Tg of 30 °C was obtained. Besides, the polymer displayed moderate water absorbance properties as a result of the presence of multiple hydroxyl groups. This property was pH dependent with maximum absorbance at pH=14. The polymer degraded rapidly under acidic conditions