Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T22:15:08.023Z Has data issue: false hasContentIssue false

Synthesis conditions of ordered mesostructured boron nitride prepared from borazinic precursors and CMK-3 carbon template

Published online by Cambridge University Press:  15 February 2011

Philippe Dibandjo
Affiliation:
Laboratoire Multimatériaux et Interfaces, UMR 5615, Bat Berthollet, Université Claude Bernard, 43 Bd du 11 nov 1918, Villeurbanne, France.
Laurence Bois
Affiliation:
Laboratoire Multimatériaux et Interfaces, UMR 5615, Bat Berthollet, Université Claude Bernard, 43 Bd du 11 nov 1918, Villeurbanne, France.
Fernand Chassagneux
Affiliation:
Laboratoire Multimatériaux et Interfaces, UMR 5615, Bat Berthollet, Université Claude Bernard, 43 Bd du 11 nov 1918, Villeurbanne, France.
A. Vuillermoz
Affiliation:
LPMCN, UMR 5586, Bât. L. Brillouin, Université Claude Bernard, 43 Bd du 11 nov 1918, Villeurbanne, France.
Philippe Miele
Affiliation:
Laboratoire Multimatériaux et Interfaces, UMR 5615, Bat Berthollet, Université Claude Bernard, 43 Bd du 11 nov 1918, Villeurbanne, France.
Get access

Abstract

The preparation of ordered mesoporous boron nitride by using borazinic precursors as boron nitride source (tri(methylamino)borazine (MAB) and tri(chloro)borazine TCB) and a mesoporous carbon CMK-3 as template is reported. A template elimination performed by hydrogenation allows to obtain an organized porous structure. The X-ray diffraction, TEM and pore size analysis show that the structure of the BN molecular sieves synthesized from CMK-3 consists in a 2D regular array of uniform mesopores of 3.4 nm in diameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Paine, R.T., Narula, C.J., Chem. Rev. 90, 73 (1990).Google Scholar
2 Lindquist, D.A., Smith, D.A., Datye, A.K., Johnston, G.P., Borek, T.T., Schaeffer, R., Paine, R.T., Mat. Res. Soc. Symp. Proc. 180, 73 (1990).Google Scholar
3 Perdigon-Melon, J.A., Auroux, A., Guimon, C., Bonnetot, B., J. Solid State Chem. 177, 609 (2004).Google Scholar
4 Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Scmitt, K.D., Chu, C.T.-W., Olson, D.H., Shepard, E.W., McCullen, S.B., Higgins, J.B., J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
5 Ryoo, R., Joo, S.H., Jun, S., J. Phys. Chem. 103, 7743 (1999).Google Scholar
6 Jun, S., Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M., J. Am. Chem. Soc. 122, 10712 (2000).Google Scholar
7 Wang, H., Li, X.D., Yu, J.S., Kim, D.P., J. Mater. Chem. 14, 1383 (2004).Google Scholar
8 Krawiec, P., Weidenthaler, C., Kaskel, S., Chem. Mater., 16, 2869 (2004).Google Scholar
9 Dibandjo, P., Bois, L., Chassagneux, F., Cornu, D., Letoffe, J-M., Toury, B., Babonneau, F., Miele, P.. Adv. Mater. 17, 571 (2005).Google Scholar
10 Bernard, S., Cornu, D., Miele, P., Vincent, H., Bouix, J., J. Organomet. Chem. 657, 91 (2002).Google Scholar
11 Kimura, Y., Kubo, Y., Hayashi, N., Composites Sci. & Tech. 51, 173 (1994).Google Scholar
12 Kang, M., Yi, S.H., Lee, H.I., Yie, J.E., Kim, J.M., Chem. Comm. 1944 (2002).Google Scholar
13 Lu, A. H., Schmidt, W., Taguchi, A., Spliethoff, B., Tesche, B., Schüth, F., Angew. Chem. Int. Ed. 41, 3489 (2002).Google Scholar
14 Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D., Science 279, 548 (1998).Google Scholar
15 Jun, S., Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., Terasaki, O., J. Am. Chem. Soc. 122, 10712 (2000).Google Scholar
16 Brown, C.A., Laubengayer, A.W., J. Am. Chem. Soc. 77, 3699 (1955).Google Scholar
17 Hedden, K., Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 60, 652 (1962).Google Scholar