Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:39:51.673Z Has data issue: false hasContentIssue false

Synthesis, Characterization, and Properties of Nanophase Ceramics

Published online by Cambridge University Press:  21 February 2011

R. W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439.
J. A. Eastman
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439.
Get access

Abstract

Ultrafine-grained ceramics have been synthesized by the production of ultrafine (2–20 nm) particles, using the gas-condensation method, followed by their in-situ, ultra-high vacuum consolidation at room temperature. These new nanophase ceramics have properties that are significantly improved relative to those of their coarser-grained, conventionally-prepared counterparts. For example, nanophase rutile (TiO2) with an initial mean grain diameter of 12 nm sinters at 400 to 600°C lower temperatures than conventional powders, without the need for compacting or sintering aids. The sintered nanophase rutile exhibits both improved microhardness and fracture characteristics. These property improvements result from the reduced scale of the grains and the increased cleanliness of the particle surfaces and the subsequently-formed grain boundaries. Research completed on the synthesis, characterization, and properties of nanophase ceramics is reviewed and the potential for using the nanophase synthesis method for engineering new and/or improved ceramics and composites is considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, N., Hansen et al., eds. (RisØ National Laboratory, Roskilde, 1981) p. 15.Google Scholar
2. Birringer, R., Herr, U., and Gleiter, H., Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).Google Scholar
3. Siegel, R. W. and Hahn, H., in Current Trends in the Physics of Materials, M., Yussouff, ed. (World Scientific Publ. Co., Singapore, 1987) p. 403.Google Scholar
4. Kimoto, K., Kamiya, Y., Nonoyama, M., and Uyeda, R., Jpn. J. Appl. Phys. 2, 702 (1963).CrossRefGoogle Scholar
5. Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
6. Thölén, A. R., Acta Metall. 27, 1765 (1979).CrossRefGoogle Scholar
7. Iwama, S., Hayakawa, K., and Arizumi, T., J. Cryst. Growth 66, 189 (1984).CrossRefGoogle Scholar
8. Eastman, J. A., these Proceedings.Google Scholar
9. Li, Z., Hahn, H., and Siegel, R. W., Mater. Lett. 6, 342 (1988).CrossRefGoogle Scholar
10. Siegel, R. W., Ramasamy, S., Hahn, H., Li, Z., Lu, T., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
11. Zhu, X., Birringer, R., Herr, U., and Gleiter, H., Phys. Rev. B 35, 9085 (1987).CrossRefGoogle Scholar
12. Haubold, T., Birringer, R., Lengeler, B., and Gleiter, H., Nature, submitted (1988).Google Scholar
13. Sass, S. L., J. Appl. Cryst. 13, 109 (1980).CrossRefGoogle Scholar
14. Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R. W., Mater. Res. Soc. Symp. Proc. 153, to be published (1989).CrossRefGoogle Scholar
15. Wallner, G., Jorra, E., Franz, H., Peisl, J., Birringer, R., Gleiter, H., Haubold, T., and Petry, W., these Proceedings.Google Scholar
16. Epperson, J. E., Siegel, R.W., White, J.W., Klippert, T. E., Narayanasamy, A., Eastman, J. A., and Trouw, F., these Proceedings.Google Scholar
17. Merkle, K. L., Reddy, J. F., and Wiley, C. L., J. de Physique, Colloque C4, 46, 95 (1985).Google Scholar
18. Li, Z., Ramasamy, S., Hahn, H., and Siegel, R. W., Mater. Lett. 6, 195 (1988).CrossRefGoogle Scholar
19. Hahn, H., Eastman, J. A., and Siegel, R. W., in Ceramic Transactions, Ceramic Powder Science, Vol.1, Part B, Messing, G. L. et al., eds. (American Ceramic Society, Westerville, 1988) p. 1115.Google Scholar
20. Birringer, R., Hahn, H., Höfler, H., Karch, J., and Gleiter, H., in Diffusion Processes in High Technology Materials, D., Gupta et al., eds. (Trans Tech. Publ., Aedermannsdorf, 1988) p. 17.Google Scholar
21. Karch, H., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar