Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:54:09.337Z Has data issue: false hasContentIssue false

Synthesis, characterization and growth mechanism of ZnO/TiO2 nanohybrid arrays

Published online by Cambridge University Press:  01 February 2011

Cheng Chun
Affiliation:
[email protected], Physics, Physics, Tower B, 005c, HKUST, Hong Kong, China, Hong Kong, N/A, China, People's Republic of
Wang Ning
Affiliation:
[email protected], Department of Physics, Tower B, 005c, HKUST,, Hong Kong, N/A, China, People's Republic of
Get access

Abstract

In this paper, we demonstrate a simple method to synthesize ZnO/TiO2 nanohybrid structure arrays based on the site-specific deposition of titanium oxide on ZnO nanorods under the hydrothermal condition. We have found that the polarity of the ZnO (0001) surface plays an important role in the formation of the nanohybrid structures. Each ZnO nanorod is assembled with one TiO2 particle only at the (0001) end surface. High-resolution transmission electron microscopy study shows that the TiO2 particles that are connected to ZnO nanorods are amorphous. By annealing at different temperatures, these particles can be transformed to nanocrystals of the anatase and rutile phases, which have a particular relationship with the orientation of ZnO nanorods and good interface structures. This work provides a rational approach to the assembly of complex nanohybrids using the intrinsic properties of ZnO nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pacholski, C., Kornowski, A., and Weller, H., Angew. Chem., Int. Ed. 43, 4774 (2004).Google Scholar
2. Cozzoli, P. D., Curri, M. L., Giannini, , and C., Agostiano, A. Small 2, 413 (2006).Google Scholar
3. Jakob, M., Levanon, H., , Kamat, and V., P. Nano Lett. 3, 353 (2003).Google Scholar
4. Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., and Hidaka, H. J., Photochem. Photobiol. A: Chem. 85, 247 (1995).10.1016/1010-6030(94)03906-BGoogle Scholar
5. Sukharev, V., and Kershaw, R., Photochem. Photobiol. A: Chem. 98, 165 (1996).10.1016/1010-6030(96)04338-9Google Scholar
6. Marci, G., Augugliaro, V., Lopez-Munoz, M. J., Martin, C., Palmisano, L., Rives, V., Schiavello, M., Tilley, R. J. D., and Venezia, A. M., J. Phys. Chem. B 105, 1033 (2001).10.1021/jp003173jGoogle Scholar
7. Chueh, Y. L., Chou, L. J., and Wang, Z. L., Angew. Chem., Int. Ed. 45, 7773 (2006).Google Scholar
8. Shi, W., Zeng, H., Sahoo, Y., Ohulchanskyy, T. Y., Ding, Y., Wang, Z. L., Swihart, M., and Prasad, P. N., Nano Lett. 6, 875 (2006).10.1021/nl0600833Google Scholar
9. Kwon, K.-W., and Shim, M., J. Am. Chem. Soc. 127, 10269 (2005).10.1021/ja051713qGoogle Scholar
10. Casavola, M., Grillo, V., Carlino, E., Giannini, C., Gozzo, F., Pinel, E. F., Garcia, M. A., Manna, L., Cingolani, R., and Cozzoli, P. D., Nano Lett. 7, 1386 (2007).10.1021/nl070550wGoogle Scholar
11. Yu, H., Chen, M., Rice, P. M., Wang, S. X., White, R. L., and Sun, S. H., Nano Lett. 5, 379 (2005).Google Scholar
12. Yao, B.D., Chan, Y.F., Zhang, X.Y., Zhang, W.F., Yang, Z.Y., and Wang, N., Appl. Phys. Lett. 82, 281 (2003).Google Scholar
13. Ponce, F. A., Bour, D. P., Young, W. T., Saunders, M., and Steeds, J. W., Appl. Phys. Lett. 69, 337 (1996).10.1063/1.118052Google Scholar
14. Zou, K., Qi, X. Y., Duan, X. F., Zhou, S. M., and Zhang, X. H., Appl. Phys. Lett. 86, 013103 (2005).10.1063/1.1844041Google Scholar
15. Li, W. J., Shi, E. W., Zhong, W. Z., and Yin, Z. W., J. Cryst. Growth 203, 186 (1999).Google Scholar
16. Wang, Z. L., Kong, X. Y., and Zuo, J. M., Phy. Rev. Lett. 91, 185502 (2003).10.1103/PhysRevLett.91.185502Google Scholar
17. Wang, Z. L. J. Mater. Chem. 15, 1021 (2005).Google Scholar
18. Meyer, B. and Marx, D. Phys. Rev. B 67, 035403 (2003).10.1103/PhysRevB.67.035403Google Scholar
19. Dulub, O., Diebold, U., and Kresse, G. Phy. Rev. Lett. 90, 016102 (2003).10.1103/PhysRevLett.90.016102Google Scholar
20. Yang, H. G., Li, C. Z., Gu, H. C., and Fang, T. N., J. Colloid Interf. Sci. 236, 96 (2001).10.1006/jcis.2000.7373Google Scholar
21. John, A. K. and Surender, G. D. J. Mater. Sci. 40, 2999 (2005).10.1007/s10853-005-2395-8Google Scholar