Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:36:18.571Z Has data issue: false hasContentIssue false

Synthesis, Characterization and Antitumor Activity of 4-Ferrocenylpyridine-3, 5-Dicarbonitrile Derivatives and Sodium Polymeric Complexes Containing Carbanionic Ligands

Published online by Cambridge University Press:  11 May 2015

E. Klimova
Affiliation:
Facultad de Química, UNAM, México D. F.,C.P.04500, México, E- mail: [email protected]
J. Sánchez
Affiliation:
Facultad de Química, UNAM, México D. F.,C.P.04500, México, E- mail: [email protected]
M. Flores
Affiliation:
Facultad de Química, UNAM, México D. F.,C.P.04500, México, E- mail: [email protected]
S. Cortez
Affiliation:
Facultad de Química, UNAM, México D. F.,C.P.04500, México, E- mail: [email protected]
T. Ramírez
Affiliation:
Instituto de Química, UNAM, México D. F.,C.P.04500, México.
A. Churakov
Affiliation:
Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp., 31, Moscow 119991, Russia.
M. Martínez
Affiliation:
Instituto de Química, UNAM, México D. F.,C.P.04500, México.
Get access

Abstract

The reactions of 2-cyano-3-ferrocenylacrylonitrile with malononitrile in a ROH/H2O medium in the presence of Na2CO3 afforded 6-alkoxy-2-amino-4-ferrocenylpyridine-3,5-dicarbonitriles, 6-alkoxy-2-amino-4-ferrocenyl-3-ferrocenyl-methyl-3,4-dihydropyridine-3,5-dicarbonitriles and Na+ polymeric complexes: {[Na+(2-ferrocenyl(tetracyano)propenyl)L] and [Na+(2-amino-3,5-dicyano-4-ferrocenyl-6-pyridyl-dicyanomethyl)L] where L = ethanol, methanol. Complexes with L = acetonitrile (c), dimethylformamide (d), acetone (e), ethyl acetate (f) were prepared by recrystallization. The structures of the compounds 4b and Na+ polymeric complexes 5c and 6d, e were established by the spectroscopic data and X-ray diffraction analysis. Two compounds 3a and 4a were tested in vitro against six human tumor cell lines U-251, PC-3, K-562, HCT-15, MCF-7 and SKLU-1 to assess their in vitro antitumor activity. The results suggest biological specificity towards PC-3, K-562 and HCT-15 cells for compound 3a, and towards PC-3 cell for compound 4a at doses 50 μM, which are lower than Cisplatin IC50s in the three cell lines.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Perevalova, E.G., Reshetova, M.D., Grandberg, K.I., Methods of Organometallic Chemistry: Organoiron Compounds, Ferrocene, Nauka: Moscow, 437, (1983).Google Scholar
Togni, A., Hayashi, T., Ferrocenes, VCH, Weinheim, 433, (1995).CrossRefGoogle Scholar
Salemand, G., Raston, C.L., The Use of Organometallic Compounds in Organic Synthesis, F. R. Hartley (Ed). Wiley: Chicheester. 159, (1987).Google Scholar
Kuehne, M.E., Bandarage, V.K., Journal Organic Chemistry, 61, 1175 (1996).CrossRefGoogle Scholar
Metzler-Nolte, N., Angewandte Chemise International, 40, 1040 (2001).3.0.CO;2-P>CrossRefGoogle Scholar
Kaifer, A.E., De Mendoza, J.C., Comprehensive Supramolecular Chemistry, Elsevier, Oxford 1, 701 (1996).Google Scholar
Yao, T., Rechnitz, G.A., Biosensors, 5,307 (1987).CrossRefGoogle Scholar
Zhu, H., Lin, H., Guo, H., Yu, L., Materials Science and Enginnering, 138, 101 (2007).Google Scholar
Stepnicka, P., Ferrocenes: materials and biomolecules , 1, 499 (2008).Google Scholar
Martinez, G.M., Klimova, B.T., Klimova, E.I., Martin, A., Cato (ed), Leading Edge Organometallic Chemistry Research, USA 27, (2006).Google Scholar
Miller, T.M., Ahmed, K.J., Wrighton, M.S., Inorganic Chemistry, 28, 2347 (1989).CrossRefGoogle Scholar
Rajput, J., Hutton, A.T., Moss, J.R., Su, H., Imrie, Ch., Journal Organometallic Chemistry, 691, 4573 (2006).CrossRefGoogle Scholar
Beletskaya, I.P., Tsvetkov, A.V., Latyshev, G.V., Tafeenko, V.A. Lukashev, VA, Journal Organometallic Chemistry, 637639, 653–663, (2001).Google Scholar
Schvekhgeimer, M.G.A., Russian Chemical Reviews, 65, 66 (1996).Google Scholar
Biot, C., Chavain, N., Dubar, F., Pradines, B., Trivelli, X., Brocard, J., Forfar, I., Dive, D., Journal Organometallic Chemistry, 694, 845 (2009).CrossRefGoogle Scholar
Brijnincx P, C.A., Sadler, P.J., Current Opinion in Chemical Biology, 12, 197 (2008).CrossRefGoogle Scholar
Kowalski, K., Winter, R.F., Journal Organometallic Chemistry, 700, 58 (2012).CrossRefGoogle Scholar
Sheldrick, G.M., SHELXS-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, (1994).Google Scholar
Klimova, E.I., Flores Álamo, M., Cortéz Maya, S., Martínez Klimova, M., Ortiz Frade, L., Klimova, T., Molecules, 17, 10079 (2012).CrossRefGoogle Scholar
Klimova, E.I., Martínez García, M., Flores Álamo, M., Churakov, A.V., Cortéz Maya, S., Beletskaya, I.P., Polyhedron, 68, 272 (2014).CrossRefGoogle Scholar
Allen, F.H., The Cambridge structural Database, 58, 380 (2002).Google Scholar
Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paul, K., Vistica, D., Hose, C., Langle, J., Cronise, P., Vaigro-Wolff, A., Gray Goodrich, M., Campbell, H., Mayo, J., Boyd, M., Journal of the National Cancer Institute, 38, 757 (1991).CrossRefGoogle Scholar