Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T17:24:08.420Z Has data issue: false hasContentIssue false

Synthesis and self-assembly of photopolymerizable quarterthiophenes

Published online by Cambridge University Press:  01 February 2011

Margarita Garcia
Affiliation:
[email protected], Eindhoven University of Technology, Laboratory of Macromolecular and Organic Chemistry, Eindhoven, N/A, 5600 MB, Netherlands
E.W. Meijer
Affiliation:
[email protected], Eindhoven University of Technology, Laboratory of Macromolecular and Organic Chemistry, Eindhoven, N/A, 5600 MB, Netherlands
Albertus Schenning
Affiliation:
[email protected], Eindhoven University of Technology, Laboratory of Macromolecular and Organic Chemistry, Eindhoven, N/A, 5600 MB, Netherlands
Get access

Abstract

A variety of α, α'-subtituted quaterthiophenes containing ester, amide and polymerizable side chains have been synthesized and fully characterized. The self-assembly properties of these oligothiophenes were studied as function of the side chain. Introduction of amide functionalities highly promotes the self-assembly via π-stacking and hydrogen bond interactions, while the lack of amides prevent aggregate formation. Initial experiments show that by introducing a sorbyl moiety as a polymerizable group it is possible to achieve covalent fixation of the oligothiophene units in the self-assembled state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 (a) Bäuerle, P. in Electronic Materials: The Oligomeric Approach, edited by Müllen, K. and Wegner, G., Wiley-VCH, Weinheim 1999; (b) D. Fichou J. Mater. Chem. 10, 571, (2000).Google Scholar
2 Lovinger, A.J. and Rothberg, L.J.J. Mater. Res., 11, 1581, (1996).Google Scholar
3 Hoeben, F., Jonkheijm, P., Meijer, E.W. and Schenning, A.P.H.J., Chem. Rev. 105, 1491, (2005).Google Scholar
4 Rep, D.B.A., Roelfsema, R., Esch, J.H. van, Schoonbeek, F.S., Kellogg, R.M., Feringa, B.L., Palstra, T.T.M. and Klapwijk, T.M., Adv. Mater., 12, 563, (2000).Google Scholar
5 Dell'Aquila, A., Mastrorilli, P., Nobile, C.F., Romanazzi, G., Suranna, G.P., Torsi, L., Tanese, M.C., Acierno, D., Amendola, E. and Morales, P., J. Mater. Chem. 16, 1183, (2006).Google Scholar
6 (a) Shklyarevsky, I.O., Jonkheim, P.. Cristianen, P., Schenning, A.P.H.J., Meijer, E.W., Henze, O., Kilbinger, A.F.M., Feast, W.J., Guerzo, A. Del, Desvergne, J.P. and Maan, J.C., J. Am. Chem. Soc., 127, 1112, (2005); (b) J. Jiang, R.C. Hughes and D.Y. Sasaki, Chem. Comm., 1028, (2004).Google Scholar
7 For example: (a) Hoag, B.P. and Gin, D.L., Liq. Cryst., 31, 185, (2004); (b) J.Y. Chang, J.H. Baik, C.B. Lee, M.J. Han, S.K. Hong, J. Am. Chem. Soc., 119, 3197, (1997); (c) V. Percec, C.H. Ahn, G. Ungar, D.J.P. Yeardley, M. Möller and S.S. Sheiko, Nature, 391, 161 (1998); (d) A.S. Dragner, R.A.P. Zangmeister, N.R. Armstrong and D.F. O'Brien, J. Am. Chem. Soc., 123, 3595 (2001); (e) N. Tamaoki, S. Shimada, Y. Okada, A. Belaissaoui, G. Kruk, K. Yase and H. Matsuda, Langmuir, 16, 384 (2000).Google Scholar
8 Huisman, B.H., Valeton, J.J.P., Nijssen, W., Lub, J. and Hoeve, W. ten, Adv. Mater., 15, 2002, (2003).Google Scholar
9 Masuda, M., Jonkheijm, P., Sijbesma, R.P. and Meijer, E.W., J. Am. Chem. Soc., 125, 15935, (2003).Google Scholar
10 Kilbinger, A.F.M. and Feast, W.J., J. Mater. Chem., 10, 1777 (2000).Google Scholar
11 Totleben, M. J., Prasad, J.S., Simpson, J. H., Chan, S.H., Vanyo, D.J., Kuehner, D.E., Deshpande, R. and Kodersha, G.A., J. Org. Chem., 66, 1057, (2001).Google Scholar