Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:11:28.407Z Has data issue: false hasContentIssue false

Synthesis and Self-Assembly of Metal-Coated Nanoparticles

Published online by Cambridge University Press:  15 March 2011

W. Park
Affiliation:
Department of Electrical & Computer Engineering University of Colorado, Boulder, CO 80309-0425, U.S.A.
T. Borsa
Affiliation:
Department of Electrical & Computer Engineering University of Colorado, Boulder, CO 80309-0425, U.S.A.
Get access

Abstract

We report theoretical and experimental studies on the metal-dielectric photonic crystal structure, which is constructed by the self-assembly of metal-coated nanoparticles. The finite- difference time-domain (FDTD) simulations were carried out to predict the width and position of the 3D photonic bandgap. For fabrication, we first prepared gold-embedded silica nanoparticles containing extremely small gold nanoparticles. The core particles are then immersed in a gold- containing solution in which the gold shells were formed by subsequent reduction. Formation of continuous shells was confirmed by scanning electron microscope (SEM) and the optical response due to the surface plasmons. We also performed self-assembly of both the gold- embedded core particles and metal-coated particles. SEM micrographs showed the formation highly ordered structures. The optical reflectance spectra exhibited shifts of the Bragg reflection peak due to the change in refractive index produced by gold nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yablonovitch, E., Phys. Rev. Lett. 63, 1950 (1987).Google Scholar
2. John, S., Phys. Rev. Lett. 58, 2486 (1987)Google Scholar
3. Jiang, P., Bertone, J. F., Hwang, K. S., and Colvin, V. L., Chem. Mater. 11, 2132 (1999).Google Scholar
4. Mayers, B. T., Gates, B. and Xia, Y., Adv. Mater. 12, 1629 (2000).Google Scholar
5. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S. W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J. P., Ozin, G. A., Toader, O. and Driel, H. M. Van, Nature 405, 437 (2000).Google Scholar
6. Vlasov, Y. A., Bo, X.-Z., Sturm, J. C. and Norris, D. J., Nature 414, 289 (2001).Google Scholar
7. Park, W., King, J. S., Neff, C. W., Liddell, C. and Summers, C. J., Phys. Stat. Solidi (b) 229, 949 (2002).Google Scholar
8. King, J. S., Neff, C. W., Park, W., Morton, D., Forsythe, E., Blomquist, S., and Summers, C. J., Appl. Phys. Lett. 83, 2566 (2003).Google Scholar
9. El-Kady, I., Sigalas, M. M., Biswas, R., Ho, K. M., and Soukoulis, C. M., Phys. Rev. B 62, 15299 (2000).Google Scholar
10. Zhang, W.Y., Lei, X.Y., Wang, Z. L., Zheng, D. G., Tam, W.Y., Chan, C. T., and Sheng, P., Phys. Rev. Lett. 84, 2853 (2000).Google Scholar
11. Stober, W., Fink, A., Bohn, E. J., Colloid Interface Sci. 26, 62 (1968).Google Scholar
12. Duff, D. G. and Baiker, A., Langmuir, 9, 2301 (1993).Google Scholar
13. Weiser, H. B. Znorganic Colloid Chemistry; Wiley: NewYork, 1933; Vol. 1, The Colloidal Elements.Google Scholar
14. Grabar, Katherine C., Allison, Keith J., Baker, Bonnie E., Bright, Robin M., Brown, Kenneth R., Freeman, R. Griffith,† Fox, Audrey P., Keating, Christine D., Musick, Michael D., and Natan, Michael J., Langmuir, 12, 2353 (1996).Google Scholar
15. Enustun, B. V., Turkevich, J. J., J. Am. Chem. Soc., 85, 3317. (1963)Google Scholar
16. Lopez, C., Vaquez, L., Meseguer, F., Mayoral, R., Ocana, M., Superlattices and Microstrustures, 22, 399 (1997).Google Scholar
17. Oldenburg, S. J., Averitt, R. D., Westcott, S. L., and Halas, N. J., Chem. Phys. Lett., 288, 243 (1998).Google Scholar
18. Graf, C. and Blaaderen, A. van, Langmuir, 18, 524 (2002).Google Scholar
19. Biggs, S. and Mulvaney, P., J. Chem. Phys. 100, 8501 (1994).Google Scholar