Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T11:22:25.200Z Has data issue: false hasContentIssue false

Synthesis and Patterning of Polymer Matrix Nanocomposites Using Femtosecond Laser-assisted Processing

Published online by Cambridge University Press:  20 July 2012

Travis J. DeJournett
Affiliation:
Dept. of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, U.S.A.
James B. Spicer
Affiliation:
Dept. of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, U.S.A.
Get access

Abstract

We describe a scalable synthesis process for the production and patterning of polymer matrix nanocomposites (PMNCs) using femtosecond laser irradiation to target specific functional behaviors. A modified, in situ chemical vapor deposition (CVD), nanoinfusion process was used to nucleate and grow nanoparticles in the bulk of an optically transparent polytetrafluoroethylene-co-hexafluoropropylene (FEP) polymer matrix. Metallic nanoparticles synthesized with this process can have a strong optical absorption at their surface plasmon resonance (SPR) frequency and we have utilized this property to selectively irradiate and pattern nanocomposites via femtosecond, photothermal heating. If the nanoparticle environment includes species used for chemical vapor deposition, the heat causes a localized decomposition of the precursor species in the immediate vicinity of the nanoparticle leading to a variety of core-shell nanostructures. Using this processing scheme, we have grown shells of tungsten oxide around silver nanoparticles within the polymer matrix resulting in a 40 nm red shift in the SPR of the silver nanoparticles in regions of the material exposed to femtosecond laser pulses. This process has also been adapted to polymers containing tungsten oxide nanoparticles so that the photocatalytic behavior of the particles could be used to the decompose precursor species in the immediate vicinity of the irradiated nanoparticles. These results demonstrate that, by using optical masks and laser processing, it is possible to synthesize nanocomposites with a high degree of control over the location, composition, size, and distribution of nanoparticles within a polymer matrix resulting in patterned materials with tailored electrical, optical, and photocatalytic properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vora, K., Kang, S., Shukla, S. and Mazur, E., Applied Physics Letters 100(6), 063120 (2012).10.1063/1.3684277Google Scholar
2. Chahadih, A., El Hamzaoui, H., Bernard, R., Boussekey, L., Bois, L., Cristini, O., Le Parquier, M., Capoen, B. and Bouazaoui, M., Nanoscale Res. Lett. 6 (2011).10.1186/1556-276X-6-542Google Scholar
3. Pustovalov, V. K., Smetannikov, A. S. and Zharov, V. P., Laser Phys. Lett. 5(11), 775792 (2008).10.1002/lapl.200810072Google Scholar
4. Averitt, R. D., Westcott, S. L. and Halas, N. J., J. Opt. Soc. Am. B-Opt. Phys. 16(10), 18241832 (1999).10.1364/JOSAB.16.001824Google Scholar
5. Aguirre, C. M., Moran, C. E., Young, J. F. and Halas, N. J., J. Phys. Chem. B 108(22), 70407045 (2004).10.1021/jp036222bGoogle Scholar
6. Ekici, O., Harrison, R. K., Durr, N. J., Eversole, D. S., Lee, M. and Ben-Yakar, A., J. Phys. D-Appl. Phys. 41(18) (2008).10.1088/0022-3727/41/18/185501Google Scholar
7. Hu, M. and Hartland, G. V., J. Phys. Chem. B 106(28), 70297033 (2002).10.1021/jp020581+Google Scholar
8. Juve, V., Scardamaglia, M., Maioli, P., Crut, A., Merabia, S., Joly, L., Del Fatti, N. and Vallee, F., Physical Review B 80(19) (2009).10.1103/PhysRevB.80.195406Google Scholar
9. Baffou, G. and Rigneault, H., Physical Review B 84(3) (2011).10.1103/PhysRevB.84.035415Google Scholar
10. Wang, Z. C. and Chumanov, G., Adv. Mater. 15(15), 1285–+ (2003).10.1002/adma.200304989Google Scholar
11. Bechinger, C., Oefinger, G., Herminghaus, S. and Leiderer, P., Journal of applied physics 74(7), 45274533 (1993).10.1063/1.354370Google Scholar
12. He, Y. P. and Zhao, Y. P., J. Phys. Chem. C 112(1), 6168 (2008).10.1021/jp076898xGoogle Scholar
13. George, S. C. and Thomas, S., Progress in Polymer Science 26(6), 9851017 (2001).10.1016/S0079-6700(00)00036-8Google Scholar