Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:03:04.766Z Has data issue: false hasContentIssue false

Synthesis and Optical Properties of SERS-active Nanocomposite Microspheres

Published online by Cambridge University Press:  01 February 2011

Abdiaziz Farah
Affiliation:
[email protected], University of Alberta, Chemistry, 11227 Saskatchewan Dr, Edmonton, T6G 2G2, Canada, 780 641-1756, 780 641-1601
Sheng Dai
Affiliation:
[email protected], National Institute for Nanotechnology, 11421 Saskatchewan Dr., Edmonton, T6G 2G2, Canada
Baker Jawabrah Al-Hourani
Affiliation:
[email protected], National Institute for Nanotechnology, 11421 Saskatchewan Dr., Edmonton, T6G 2G2, Canada
Juan P. Bravo-Vasquez
Affiliation:
[email protected], National Institute for Nanotechnology, 11421 Saskatchewan Dr., Edmonton, T6G 2G2, Canada
Jae-Young Cho
Affiliation:
[email protected], National Institute for Nanotechnology, 11421 Saskatchewan Dr., Edmonton, T6G 2G2, Canada
Hicham Fenniri
Affiliation:
[email protected], National Institute for Nanotechnology, 11421 Saskatchewan Dr., Edmonton, T6G 2G2, Canada
Get access

Abstract

An approach to prepare metal nanoparticle-polymer microbeads with integrated Raman tags using SERS as reliable diagnostic tool is reported. In essence, spectroscopically encoded (4-thioacetyl)styrenes were assembled on well-characterized 50 nm Au NPs and subjected to suspension polymerization conditions using styrene and methacrylic acid as comonomers and divinylbenzene as crosslinker. The resulting metal embedded nanocomposites were characterized by SEM, TEM, DSC, TGA, Raman and SERS to determine their morphology, particle size, composition, thermal stability and their optical and electronic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. K, Braeckmans, Smedt, S. C. De, Leblans, M. M, C. Roelant, Demeester, J., J. Nat. Rev. drug Discovery 1, 1, (2002).Google Scholar
2. Fenniri, H., Alvarez-Puebla, R. A. Nat. Chem. Biol. 3, 247 (2007).Google Scholar
3.(a) Cunin, F., Schmedake, T. A., Link, J. R., Li, Y. Y., Koh, J., Bhatia, S. N., Sailor, M. J.. Nature Materials 1, 39 (2002); (b) N. H. Finkel, X. Lou, C. Wang, L. He, Anal. Chem. 76, 353A (2004); (c) D. C. Pregibon, M. Toner, P. S. Doyle, Science 315, 1396 (2007).Google Scholar
4.(a) Fenniri, H., Chun, S., Ding, L., Zyrianov, Y., Hallenga, K., J. Am. Chem. Soc. 125, 10546 (2003); (b) H. Fenniri, L. Ding, A. E. Ribbe, Y. Zyrianov, J. Am. Chem. Soc. 123, 8151 (2001); (c) J. Raez, D. R. Blais, Y. Zhang, R. A. Alvarez-Puebla, J. P. Bravo-Vasquez, J. P. Pezacki, H. Fenniri, Langmuir 23, 6482 (2007); (d) J. P. Bravo-Vasquez, R. A. Alvarez-Puebla, H. Fenniri, Sens. & Actuators B 125, 357 (2007).Google Scholar
5.(a) Fenniri, H., Hedderich, H. G., Haber, K. S., Achkar, J., Taylor, B., Ben-Amotz, D., Angew. Chem. Int. Ed. 39, 4483 (2000); (b) H. Fenniri, O. Terreau, S. Chun, S. J. Oh, W. F. Finney, M. D. Morris J. Comb. Chem. 8, 192 (2006).Google Scholar
6. Chun, S., Xu, J., Cheng, J., Ding, L., Winograd, N., Fenniri, H. J. Comb. Chem. 8, 18 (2006).Google Scholar
7. Aroca, R. F., Surface Enhanced Vibrational Spectroscopy. Wiley New York, (2006).Google Scholar
8. Li, G., Fan, J., Jiang, R., Gao, Y., Chem. Mater. 16, 1835 (2004).Google Scholar
9. Zhang, J., Xu, S., Kumacheva, E. J. Am. Chem. Soc. 126, 7908 (2004).Google Scholar
10. Quaroni, L., Chumanov, G., J. Am. Chem. Soc. 121, 10642 (1999).Google Scholar
11. Shenhar, R., Rotello, V. M., Acc. Chem. Res. 36, 549 (2003).Google Scholar
12. Vriezema, D. M., Comellas-Aragones, M., Elemans, J. A. A. W., J. J. Cornelissen, L. M., Rowan, A. E., Nolte, R. J. M., Chem. Rev. 105, 1445 (2005).Google Scholar
13. Thomas, K. G., Kamat, P.V., Acc. Chem. Res. 36, 888 (2003).Google Scholar
14. Frens, G., Nat. Phys. Sci. 241, 20 (1973)Google Scholar
15. Al-Hourani, B. Jawabrah, Bravo-Vasquez, J. P., High, L. H., Fenniri, H.. Tetrahedron Lett. (2007) (in press)Google Scholar
16. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. J. A., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C, Clifford, S, Ochterski, J, GA, Petersson, PY, Ayala, Cui, Q, Morokuma, K, Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., Pople, J. A., Gaussian, Inc.: Pittsburgh PA, 2003.Google Scholar
17. Becke, A. D., J. Chem. Phys. 98, 5648 (1993).Google Scholar
18. Lee, C., Yang, W., Parr, R. G., Phys. Rev. B. 37, 785 (1988).Google Scholar
19. Hehre, W. J., Ditchfield, R., Pople, J. A., J. Chem. Phys. 56, 2257 (1972); (b) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J A. Pople, J. Chem. Phys. 77, 3754 (1982).Google Scholar
20. McLean, A. D., Chadler, G. S., J. Chem. Phys. 72, 5639 (1980).Google Scholar
21. Halls, M. D., Velkovski, H., Schegel, H. B., Theor. Chem. Acc. 105, 413 (2001).Google Scholar
22. Moskovits, M., Shuh, J. S., J. Phys. Chem. 88, 5526 (1984).Google Scholar