Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T00:50:33.194Z Has data issue: false hasContentIssue false

Synthesis and Optical Limiting Characterization of a Porphyrin-Buckminsterfullerene Dyad

Published online by Cambridge University Press:  10 February 2011

Kenneth J. McEwan
Affiliation:
Defence Evaluation and Research Agency, Malvern, Worcs, WR14 3PS, United Kingdom
Keith L. Lewis
Affiliation:
Defence Evaluation and Research Agency, Malvern, Worcs, WR14 3PS, United Kingdom
How-Ghee Ang
Affiliation:
DSO National Laboratories, 20 Science Park Drive, Singapore, 118230
Zhi-Heng Loh
Affiliation:
DSO National Laboratories, 20 Science Park Drive, Singapore, 118230
Leng-Leng Chng
Affiliation:
DSO National Laboratories, 20 Science Park Drive, Singapore, 118230
Yiew-Wang Lee
Affiliation:
DSO National Laboratories, 20 Science Park Drive, Singapore, 118230
Get access

Abstract

The optical limiting performances of donor-buckminsterfullerene (C60) dyads have hitherto been unreported. The predicted large excited state absorption cross-section of such dyads in their charge-separated states would enable them to exhibit enhanced optical limiting relative to their individual components. We report herein the synthesis and optical limiting characterization of a novel porphyrin-buckminsterfullerene dyad, in which the porphyrin and C60 moieties are held within close proximity of one another by an o-phenylene bridge. The porphyrin-C60 dyad was synthesized via 1,3-dipolar azomethine ylide cycloaddition, and was obtained in 37.0% yield. Optical limiting measurements at 532 nm using 3-ns pulses show that the limiting performance of the dyad is poorer compared to its model compounds. Possible reasons for the worsened performance of the dyad will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lascola, R. and Wright, J.C., Chem. Phys. Lett. 269, 79, (1997); 290, 117 (1998).Google Scholar
2 Blau, W., Bryne, H., Dennis, W.M., Kelly, J.M., Opt. Commun. 56, 25, (1985).Google Scholar
3 Guha, S., Roberts, W.T., Ahn, B.H., Appl. Phys. Lett. 68, 3686, (1996).Google Scholar
4 Chen, P., Tomov, I.V., Dvorniknov, A.S., Nakashima, M., Roach, J.F., Alabran, D.M., Rentzepis, P.M., J. Phys. Chem. 100, 17507, (1996).Google Scholar
5 Su, W., Cooper, T.M., Brant, M.C., Chem. Mater. 10, 1212, (1998).Google Scholar
6 Tutt, L.W. and Kost, A., Nature 356, 225, (1992).Google Scholar
7 McLean, D.G., Sutherland, R.L., Brant, M.C., Brandelik, D.M., Fleitz, P.A., Pottenger, T., Opt. Lett. 18, 858, (1993).Google Scholar
8 Justus, B.L., Kafafi, Z.H., Huston, A.L., Opt. Lett. 18, 1603, (1993).Google Scholar
9 Mishra, S.R., Rawat, H.S., Mehendale, S.C., Appl. Phys. Lett. 71, 46, (1997).Google Scholar
10 Hirsh, A., The Chemistry of the Fullerenes, (Georg-Thieme, Stuttgart, 1994).Google Scholar
11 The Chemistry of Fullerenes, edited by Taylor, R. (World Scientific, Singapore, 1995).Google Scholar
12 Haddon, R.C., Science 261, 1545, (1993).Google Scholar
13 Imahori, H. and Sakata, Y., Adv. Mater. 9, 537, (1997).Google Scholar
14 Martin, N., Sdnchez, L., Illescas, B., Perez, I., Chem. Rev. 98, 2527, (1998).Google Scholar
15 Prato, M. and Maggini, M., Acc. Chem. Res. 31, 519, (1998).Google Scholar
16 Spartan 5.1, Wavefunction, Inc., 18401 Von Karman Ave., Suite 370, Irvine, CA 92612, U.S.A.Google Scholar
17 Clark, M., Cramer, R.D. III, Opdensch, N. van, J. Comput. Chem. 10, 982, (1989).Google Scholar
18 Stewart, J.J.P., J. Comput. Chem. 10, 209, 221, (1989).Google Scholar
19 UV-vis λmax/nm (model porphyrin/CH2Cl2) = 423, 518, 553, 593, 650; λmax/nm (dyad/CH2CI2) = 228, 256, 423, 518, 553, 593, 654. The high energy excitation peaks at 228 and 256 nm in the UV-vis spectrum of the dyad originate from the C60 moiety, and are unperturbed relative to the pristine fullerene [20].Google Scholar
20 Leach, S., Vervolet, M., Desprès, A., Bréheret, E., Hare, J.P., Dennis, T.J., Kroto, H.W., Taylor, R., Walton, D.R.M., Chem. Phys. 160, 451, (1992).Google Scholar
21 Liddell, P.A., Sumida, J.P., MacPherson, A.N., Noss, L., Seely, G.R., Clark, K.N., Moore, A.L., Moore, T.A., Gust, D., Photochem. Photobiol. 60, 537, (1994).Google Scholar
22 Kuciaskas, D., Lin, S., Seely, G.R., Moore, A.L., Moore, T.A., Gust, D., Drovetskaya, T., Reed, C.A., Boyd, P.D.W., J. Phys. Chem. 100, 15926, (1996).Google Scholar
23 Imahori, H., Hagiwara, K., Aoki, M., Akiyama, T., Tamiguchi, S., Okada, T., Shirakawa, M., Sakata, Y., J. Am. Chem. Soc. 118, 11771, (1996).Google Scholar
24 Baran, P.S., Monaco, R.R., Khan, A.U., Schuster, D.I., Wilson, S.R., J. Am. Chem. Soc. 119, 8363 (1997).Google Scholar
25 Hunter, C.A. and Sanders, J.K.M., J. Am. Chem. Soc. 112, 5525, (1990).Google Scholar
26 Sun, Y.-P., Ma, B., Bunker, C.E., J. Phys. Chem. A 102, 7580, (1998).Google Scholar
27 Sun, Y.-P., Riggs, J.E., Liu, B., Chem. Mater. 9, 1268, (1997).Google Scholar
28 Sun, Y.-P., Lawson, G.E., Riggs, J.E., Ma, B., Wang, N., Moton, D.K., J. Phys. Chem. A 102, 5520 (1998).Google Scholar
29 Signorini, R., Zerbetto, M., Meneghetti, M., Bozio, R., Maggini, M., Scorrano, G., Prato, M., Brusatin, G., Menegazzo, E., Guglielmi, M., SPIE Fullerenes and Photonics 112854, 130, (1996).Google Scholar
30 Meneghetti, M., Signorini, R., Zerbetto, M., Bozio, R., Maggini, M., Scorrano, G., Prato, M., Brusatin, G., Menegazzo, E., Guglielmi, M., Synth. Met. 86, 2353, (1997).Google Scholar