No CrossRef data available.
Published online by Cambridge University Press: 19 June 2015
Due to the potential applications to high-efficiency and light-weight solar cells, the growth of CuInGaSe2 (CIGS) nanoparticles is a recent research focus. We have developed a relatively simple solvothermal route to grow high quality CIGS nanoparticles in an autoclave under different temperatures (170 – 280°C). The effect of reaction temperature on the shape of CIGS nanoparticles has been investigated. At lower temperatures, the CIGS particles show plate-like shape. Whereas at higher temperatures, most of them exhibit rod-like feature. The nanoparticle products have been also characterized by field emission scanning electron microscopy and X-ray diffraction techniques.