Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:42:25.216Z Has data issue: false hasContentIssue false

Synthesis and Microstructures of α-Fe2O3 Bicrystalline Nanowires

Published online by Cambridge University Press:  01 February 2011

R.M. Wang
Affiliation:
State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R., China Ernest Orlando Lawrence Berkeley National Laboratory, National Center for Electron Microscopy, University of California, Berkeley, CA 94720
Y.F. Chen
Affiliation:
State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R., China
Y. Y. Fu
Affiliation:
State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R., China
H. Zhang
Affiliation:
State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R., China
C. Kisielowski
Affiliation:
Ernest Orlando Lawrence Berkeley National Laboratory, National Center for Electron Microscopy, University of California, Berkeley, CA 94720
Get access

Abstract

Novel Fe2O3 nanowires have been successfully synthesized by a simple oxidation process of pure iron. The microstructure of the Fe2O3 nanowires have been systematically investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM). The investigated materials are found to be stoichiometric rhombohedral α-Fe2O3 with typical diameters of 20–80 nm and lengths up to 20 μm. In addition to known single crystal Fe2O3 nanowires, a great amount of novel bicrystalline nanowires were found with ellipsoidal heads. Investigations indicate that most of the bicrystalline nanowires are twins and their orientation relationship is obtained to be (−1, 1, 10)M//(−1, 1, 10)T, [110]M//[-1-10]T. High resolution TEM with numerical reconstruction of the electron exit wave was used to investigated the atomic structure of the micro-twins. Their growth mechanism is briefly discussed on the basis of solid phase growth process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim, F., and Yan, Y. Q., Adv. Mater. 15 353 (2003).Google Scholar
2. Ohmori, T., Takahashi, H., Mametsuka, H. and Suzuki, E., Phys. Chem. Chem. Phys. 2 3519 (2000).Google Scholar
3. Huo, L., Li, W., Lu, L., Cui, H., Xi, S., Wang, J., Zhao, B., Shen, Y., and Lu, Z., Chem. Mater., 12 790 (2000).Google Scholar
4. Geus, J. W., Appl. Catal., 25, 313 (1986).Google Scholar
5. Fu, Y. Y., Chen, J., Zhang, H., Chem. Phy. Lett. 350 491 (2001).Google Scholar
6. Fu, Y. Y., Wang, R. M., Xu, J., Chen, J., Yan, Y., Narlikar, A. V., Zhang, H., Chem. Phy. Lett. 379 373 (2003).Google Scholar
7. Lin, Y., Sun, F. Q., Yuan, X.Y., Geng, B.Y., Zhang, L.D., Appl. Phy. A-Mater. Sci. Process. 78 1197 (2004).Google Scholar
8. Carim, A. H., Lew, K. K., Redwing, J. M., Adv. Mater. 13 1489 (2001).Google Scholar
9. Jiang, X. C., Herricks, T., Xia, Y. N., Nano Lett. 2 1333 (2002).Google Scholar
10. Dai, Y., Zhang, Y., Bai, Y. Q., Wang, Z. L., Chem. Phy. Lett. 375 96 (2003).Google Scholar
11. Meng, X. M., Jiang, Y., Liu, J., Lee, C. S., Bello, I., Lee, S. T., Appl. Phy. Lett. 83 2244 (2003).Google Scholar
12. Morales, A. M., Lieber, C. M., Science 279 208 (1998).Google Scholar
13. Shi, W. S., Zheng, Y. F., Wang, N., Lee, C. S., Lee, S. T., Chem. Phy. Lett. 345 377 (2001)Google Scholar
14. Wang, R. M., Chen, Y. F., Fu, Y. Y., Zhang, H. and Kisielowski, C., Bicrystalline Hematite Nanowires, (unpublished).Google Scholar
15. Gu, G., Zheng, B., Han, W. Q., Roth, S., Liu, J., Nano Letters, 2 849 (2002).Google Scholar