Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:13:51.209Z Has data issue: false hasContentIssue false

Synthesis and Laser Spectroscopy of Monoclinic Eu3+: Y2O3 Nanocrystals

Published online by Cambridge University Press:  10 February 2011

Bipin Bihari
Affiliation:
Department of Chemistry, Virginia Polytechnic Institute and State University Blacksburg, VA 24061–0212
Brian M. Tissue
Affiliation:
Department of Chemistry, Virginia Polytechnic Institute and State University Blacksburg, VA 24061–0212
Get access

Abstract

Gas-phase condensation of CO2 laser-heated EU3+:Y2O3 ceramics produces monoclinic-phase nanocrystalline material. Transmission electron microscopy shows particle diameters in the range 7–30 nm for particles quenched at 60 °C under 400 Torr of nitrogen atmosphere. The optical spectra of nanocrystals produced from 0.1% Eu3+:Y2O3 starting material have narrow lines, and the 5D0 lifetimes are 1.8, 1.2 and, 1.3 ms for the three Eu3+ cation sites. Nanocrystals obtained from 0.7 –5 % Eu3+:Y2O3 starting material show line broadening and the presence of Eu2O3 secondary phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Andres, R. P., Averback, R. S., Brown, W. L., Bras, L. E., Goddard, W. A. III, Kaldor, A., Louie, S. G., Moscovite, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F. and Wang, Y., J. Mater. Res. 4, 704736 (1989).Google Scholar
2. Hadjipanayis, G. C. and Siegel, R. W., eds., Nanophase Materials: Synthesis - Properties -Applications, NATO ASI Series E Vol. 260 (Kluwer, Dordrecht, 1993).Google Scholar
3. Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).Google Scholar
4. Hase, T., Kano, T., Nakazawa, E. and Yamamoto, H., Adv. Electronics and Electron Phys. 1990 271.Google Scholar
5. Eilers, H. and Tissue, B. M., Chem. Phys. Lett. 251, 7478 (1996).Google Scholar
6. Skandan, G., Foster, C. M., Frase, H., Ali, M. N., Parker, J. C. and Hahn, H., Nanostruct. Mater. 1, 313(1992).Google Scholar
7. Shen, G., Stump, N. A.. Haire, R. G. and Peterson, J. R., J. Alloys and Comp. 181, 503 (1992).Google Scholar
8. Hoekstra, H. R., Inorg. Chem. 5, 754 (1966).Google Scholar
9. Hintzen, H. T. and van Noort, H. M., J. Phys. Chem. Solids 49, 873 (1988).Google Scholar
10. Sheng, K. C. and Korenowski, G. M., J. Phys. Chem. 92, 50 (1988).Google Scholar
11. Dexpert-Ghys, J., Faucher, M. and Caro, P., Phys. Rev. B23, 607 (1981).Google Scholar
12. Eilers, H. and Tissue, B. M., Mater. Lett. 24, 261265 (1995).Google Scholar
13. Doss, J. and Zallen, R., Phys. Rev. B48, 15626 (1993).Google Scholar
14. Blasse, , in Energy transfer processes in condensed matter edited by Di-Bartolo, B. (Plenum, New York, 1984), p. 251.Google Scholar
15. Holstein, T., Lyo, S. K. and Orbach, R., in Laser spectroscopy of solids edited by Yen, W. M. and Selzer, P. M. (Springer-Verlag 1986) pp. 3982.Google Scholar