Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T08:48:30.809Z Has data issue: false hasContentIssue false

Synthesis and Enhanced Electromagnetic Wave Absorption Properties of Fe3O4@ZnO Mesoporous Spheres

Published online by Cambridge University Press:  15 April 2014

Danping Sun
Affiliation:
National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
Wei Jiang
Affiliation:
National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
Yanping Wang
Affiliation:
National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
Chen Sun
Affiliation:
National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
Quan Zou
Affiliation:
National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
Gongzong Liu
Affiliation:
National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
Jie Liu
Affiliation:
National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
Fengsheng Li
Affiliation:
National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
Get access

Abstract

Mesoporous Fe3O4 nanoparticles coated with ZnO nanocrystals were successfully synthesized by a simple solution method at low temperature. The transmission electron microscopy analysis indicates that the mesoporous Fe3O4 nanoparticles are monodispersed with a mean diameter of 160 nm and the thickness of ZnO layer is 15 nm approximately. The porosity of the products was further substantiated by the nitrogen (N2) sorption measurement. The N2 adsorption-desorption isotherm curve can be identified as type IV, which is a characteristic of mesopores. Electromagnetic (EM) wave absorption properties of the as-prepared Fe3O4@ZnO mesoporous spheres-wax composites were investigated at a room temperature in the frequency range of 0.5∼18 GHz. Interestingly, the Fe3O4@ZnO mesoporous spheres exhibit an enhanced EM wave absorption due to the mesoporous structure. The multiple absorbing mechanisms result from the interface polarization induced by the special core/shell and mesoporous structures as well as dipole polarization of both Fe3O4 and ZnO. The results demonstrate that the Fe3O4@ZnO mesoporous spheres are attractive candidates for a new kind of EM wave absorption materials with wide absorption frequency band.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dhami, A. K., Environ. Monit. Assess. 184, 6507 (2011).10.1007/s10661-011-2436-5CrossRefGoogle Scholar
Yusoff, A. N., Abdullah, M. H., Ahmad, S. H., Jusoh, S. F., Mansor, A. A., Hamid, S. A. A., J. Appl. Phys. 92, 876 (2002).10.1063/1.1489092CrossRefGoogle Scholar
Watts, C. M., Liu, X., Padilla, W., J. Adv. Mater. 24, OP98 (2012).Google Scholar
Che, R., Peng, L., Duan, X., Chen, Q., Liang, X., Adv. Mater. 16, 401 (2004).10.1002/adma.200306460CrossRefGoogle Scholar
Liu, T., Zhou, P., Xie, J., Deng, L., J. Appl. Phys. 111, 093905 (2012).10.1063/1.4709727CrossRefGoogle Scholar
Wang, F., Liu, J., Kong, J., Zhang, Z., Wang, X., Itoh, M., Machida, K., J. Mater. Chem. 21, 4314–4120 (2011).10.1039/c0jm02894kCrossRefGoogle Scholar
Wang, Z., Wu, L., Zhou, J., Shen, B., Jiang, Z., RSC Adv. 3, 3309 (2013).10.1039/c2ra23404aCrossRefGoogle Scholar
Chen, Y., Zhang, F., Zhao, G., Fang, X., Jin, H., Gao, P., Zhu, C., Cao, M., Xiao, G., J. Phys. Chem. C 114, 9239 (2010).10.1021/jp912178qCrossRefGoogle Scholar
Ren, Y., Wu, H., Lu, M., Chen, Y., Zhu, C., Gao, P., Cao, M., Li, C., Ouyang, Q., ACS Appl. Mater. Inter. 4, 6436 (2012).10.1021/am3021697CrossRefGoogle Scholar
Zhang, L., Qiao, S. Z., Jin, Y. G., Chen, Z. G., Gu, H. C., Lu, G. Q., J. Adv. Mater. 20, 805 (2008).10.1002/adma.200700900CrossRefGoogle Scholar
Zhu, M. Y., Diao, G. W., J. Phys. Chem. C 115, 18923 (2011).10.1021/jp200418jCrossRefGoogle Scholar
Ni, S.B., Wang, X.H., Zhou, G., Yang, F., Wang, J.M., He, D.Y., J. Alloy. Compd. 489, 252 (2010).10.1016/j.jallcom.2009.09.065CrossRefGoogle Scholar
Cao, M.S., Shi, X.L., Fang, X.Y., Jin, H.B., Hou, Z.L., Zhou, W., Chen, Y.J., Appl. Phys. Lett. 91, 203110 (2007).10.1063/1.2803764CrossRefGoogle Scholar
Sun, D., Zou, Q., Qian, G., Sun, C., Jiang, W., Li, F., Acta Mater. 61, 5829 (2013).10.1016/j.actamat.2013.06.030CrossRefGoogle Scholar
Liu, H. L., Wu, J. H., Min, J. H., Zhang, X. Y., Kim, Y. K., Mater. Res. Bull. 48, 551 (2013).10.1016/j.materresbull.2012.11.051CrossRefGoogle Scholar