Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:28:47.987Z Has data issue: false hasContentIssue false

Synthesis and Colloidal Processing of Nanocrystalline (Y2O3-Stabilized) ZrO2 Powders by a Surface Free Energy Controlled Process

Published online by Cambridge University Press:  10 February 2011

Detlef Burgard
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrücken, Germany
Rüdiger Nass
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrücken, Germany
Helmut Schmidt
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66123 Saarbrücken, Germany
Get access

Abstract

Using the controlled growth technique, nanocrystalline ZrO2 powders have een prepared from solution. By variation of the Y-content (0-8 mol %), redispersable monoclinic, tetragonal or cubic ZrO2 powders with particle sizes between 5 and 10 mn were obtained after crystallization at elevated temperature and pressure. Nanodisperse suspensions of the powders have been used for colloidal processing techniques such as tape casting, slip casting or extrusion. The resulting green bodies with densities of 55 % and average pore sizes of 5 nm could be sintered at temperatures below 1100 °C leading to monoclinic, tetragonal or cubic ZrO2 ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gleiter, H., DSV-Berichte, 129 8692 (1990)Google Scholar
[2] Gleiter, H., Phase Transition 24–26, 1526(1990)Google Scholar
[3] Gleiter, H., Prog. Mat. Sci. 33, 223315 (1990)Google Scholar
[4] Karch, J., Birringer, R. and Gleiter, H., Nature 33, 556 (1987)Google Scholar
[5] Ramamurthi, S. D., Xu, Z. and Payne, D.A., J. Am. Ceram. Soc.73, 2760–63 (1990)Google Scholar
[6] F. Chaput and J.-P. Boilot, Euroceramics 1, Processing in Ceramics, Hrsg.: With, G. de, Terpstra, R. A. and Metselaar, R., Elsevier Applied Science, London / New York, 1989, 1.62–1.66Google Scholar
[7] Kriechbaum, G. W. and Kleinschmit, P., Advanced Materials, 10, 330337, 1989 Google Scholar
[8] Hartmann, W., Liu, A. T., Peuckert, D., Kleinschmit, P., Mater. Sci. Eng. (1989) 243Google Scholar
[9] Schulz, O., Hausner, H., Elektrowärme Int., 45 (3/4), B 174 (1987)Google Scholar
[10] R. Naß and Schmidt, H., J. Non-Cryst. Solids 121, 329333 (1990)Google Scholar
[11] Richardson, K. and Akinc, M., Ceram Int. 13, 253261 (1987)Google Scholar
[12] Naß, R., Burgard, D. and Schmidt, H., European Materials Research Society Monographs 5, Eurogel91, 243255 (1992)Google Scholar
[13] Burgard, D., Master Thesis, University of Saarbrücken, Germany (1992)Google Scholar
[14] Voigt, I., Feltz, A. and Rösler, M., European Materials Research Society Monographs 5, Eurogel91, 235243 (1992)Google Scholar
[15] K. Osseo-Asare and F. J. Arriagada, Ceramic Transactions 12 Ceramic Powder Science IlI Hrsg.: Messing, G. L., Hirano, S. and Hausner, H., American Ceramic Society, Westerville/Ohio, USA, 1990 316 Google Scholar
[16] Burgard, D., Kropf, C., Naß, R. and Schmidt, H., Better Ceramics through Chemistry, MRS, 346 101107 (1994)Google Scholar
[17] Schmidt, H., Mennig, M. and Naß, R., Sol-Gel Processing and Applications, eddited by Attia, Y.A., Plenum Press, New York, 185198 (1994)Google Scholar
[18] Andersson, C. A. and Gupta, T. K., Advances in Ceramics Vol 3, Science and Technology of Zirconia eddited by A. H. Heuer and L. W. Hobbs, 184–201 (1981)Google Scholar