Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:34:49.129Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Semiconductor Nanop Articulates

Published online by Cambridge University Press:  21 February 2011

Norman Herron
Affiliation:
The DuPont Company, Central Research and Development, P.O. Box 80328, Wilmington, DE 19880-0328
Ying Wang
Affiliation:
The DuPont Company, Central Research and Development, P.O. Box 80328, Wilmington, DE 19880-0328
Get access

Abstract

Semiconductor nanoparticulates are important materials bridging the gap in size and electronic properties between molecular species and bulk materials. Synthetic approaches to producing controlled sized clusters of this sort will be described, covering physical encapsulation in zeolites or porous glass and extending to discrete syntheses using surface terminating reagents. The optical properties of the resultant materials will be described in detail and the structural topology of the clusters elucidated by combined powder and single crystal diffraction. Thermal transformations of these clusters into bulk materials will be tracked and the processing possibilities explored for the production of polycrystalline films and polymer/semiconductor composites. Photoconductivity in the latter composites will be described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Brus, L.E., J.Phys. Chem. 90, 2555 (1986) and references therein. L.E. Brus, J.Chem.Phys. 80, 4403 (1984).Google Scholar
2 Wang, Y. and Herrón, N., J. Phys. Chem. 95, 525 (1991).Google Scholar
3 Wang, Y. and Herron, N., J. Phys. Chem. 92, 4988 (1988). N. Herron, Y. Wang, M. Eddy, G.D. Stucky, D.E. Cox, T. Bein, K. Moller, J. Am. Chem. Soc. 121, 530 (1989).Google Scholar
4 Breck, D.W., Zeolite Molecular Sieves, (Wiley Publishers, New York, 1974).Google Scholar
5 Calligaris, M., Mardin, G., Randaccio, L., Zangrando, E., Zeolites 6, 439 (1986).Google Scholar
6 Jentys, A., Grimes, R.W., Gale, J.D., Catlow, C.R.A., J. Phys. Chem. 97, 13535 (1993).Google Scholar
7 Rossetti, R., Hull, R., Gibson, J.M., Brus, L.E., J. Chem. Phys. 83, 1406 (1985).Google Scholar
8 Kirkpatrick, S., Rev. Mod. Phys. 45, 574 (1973) and references therein.Google Scholar
9 Pope, E.J.A., Asami, M., Mackenzie, J.D., J. Mater. Res. 4, 1018 (1989).Google Scholar
10 Luong, J.C., Borelli, N.F., Mat. Res. Soc. Symp. Proc. 144, 695 (1989).Google Scholar
11 Shafer, M.W., Awschalom, D.D., Warnock, J., J. Appl. Phys. 61, 5438 (1987).Google Scholar
12 Herron, N. and Wang, Y., U.S. Patent No. 5,162,939 (10 November 1992). N. Herron and Y. Wang, U.S. Patent No. 5,132,051 (21 July 1992).Google Scholar
13 Wang, Y., Herron, N., Moller, K., Bein, T., Solid State Commun. 77, 33 (1991).Google Scholar
14 Herron, N., Wang, Y., Ecken, H., J. Am. Chem. Soc. 112, 1322 (1990).Google Scholar
15 Cheng, L.-T., Herron, N., Wang, Y., J. Appl. Phys. 66, 3417 (1989). Y. Wang, N. Herron, Inter. J. Nonlinear Opt. Phys. 1, 683 (1992).Google Scholar
16 Wang, Y., Herrón, N., Harmer, M., Suna, A., Mat. Res. Soc. Symp. Proc. 272, 205 (1992)Google Scholar
17 Dance, LG., Choy, A., Scudder, M.L., J. Am. Chem. Soc. 106, 6285 (1984). G.S.H. Lee, D.C. Craig, I. Ma, M.L. Scudder, T.D. Bailey, LG. Dance, J. Am. Chem. Soc. 110, 4863 (1988).Google Scholar
18 Herron, N., Calabrese, J.C., Farneth, W.E., Wang, Y., Science 259, 1426 (1993).Google Scholar
19 Farneth, W.E., Herron, N., Wang, Y., Chem. Mater. 4, 916 (1992).Google Scholar
20 Wang, Y. and Herron, N., Chem. Phys. Letts. 200, 71 (1992).Google Scholar
21 Herron, N. and Wang, Y., U.S. Patent No. 5, 238, 607 (24 August 1993).Google Scholar