Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:15:27.916Z Has data issue: false hasContentIssue false

Synthesis And Characterization Of Nine Metal Nitrides

Published online by Cambridge University Press:  10 February 2011

Travis Wade
Affiliation:
Department of Chemistry, Texas A & M University, College Station, TX 77843-3255
Richard M. Crooks
Affiliation:
Department of Chemistry, Texas A & M University, College Station, TX 77843-3255
Get access

Abstract

We demonstrate a simple electrochemical method suitable for preparing precursors for nine different metal-nitride ceramics. These precursor powders were calcined in flowing NH3 or Ar to yield metal-nitride ceramic powders. This electrochemical synthetic technique was applied to Al, Ga, Mo, Nb, Ni, Ti, V, W, and Zr and resulted in a nitride of each of these metals. The calcination conditions determined the resulting phase, composition, and morphology of the product. The ceramic materials were characterized primarily by powder XRD.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sheppard, L. M., Ceram. Bull. 69, 1801 (1990).Google Scholar
2. Kuramoto, N., Taniguchi, H., J. Mater. Sci. Lett. 3, 471 (1984).Google Scholar
3. Strite, S., Lin, M. E., Morcoc, H., Thin Solid Films 231, 197 (1993).Google Scholar
4. Toth, L., Transition Metal Carbides and Nitrides (Academic, New York, 1971).Google Scholar
5. Kodymova, J., Krejci, V., Laska, L., Votruba, J., Acta. Phys. Slov. 32, 177 (1982).Google Scholar
6. Christensen, A. N., Fregerslev, S., Acta. Chem. Scand. A. 31, 861 (1977).Google Scholar
7. Abe, H., Hamasaki, K., Ikeno, Y., Appl. Phys. Lett. 61, 1131 (1992).Google Scholar
8. Hossain, M. S., Yoshida, K., Kudo, K., Enpuku, K., Yamafuji, K., Jpn. J. Appl. Phys. 31, 1033 (1992).Google Scholar
9. Aoyagi, M., Shoji, A., Kosaka, S., Nakagawa, H., Takada, S., IEEE Trans. Magn. 25, 1223 (1989).Google Scholar
10. Francavilla, T. L., et al., IEEE Trans. Magn. MAG-2, 1397 (1987).Google Scholar
11. Capone, D. W. I., Gray, K. E., Kampwirth, R. T., Ho, H. L., J. Nucl. Mater. 141–143, 73 (1986).Google Scholar
12. Ross, C. B., Wade, T., Crooks, R. M., Smith, D. M., Chem. Mater. 3, 768 (1991).Google Scholar
13. Wade, T., et al., Mater. Res. Soc. Symp. Proc. 277, 857 (1992).Google Scholar
14. Wade, T., et al., J. Am. Chem. Soc. 114, 9457 (1992).Google Scholar
15. Wade, T., et al., Chem. Mater. 6, 87 (1994).Google Scholar
16. Bratsch, S. G., Lagowski, J. J., J. Sol. Chem. 16, 583 (1987).Google Scholar
17. Nicholls, D., Inorganic Chemistry in Liquid Ammonia (Elsevier, Amsterdam, The Netherlands, 1979).Google Scholar
18. McElroy, A. D., Kleinberg, J., Davidson, A. W., J. Am. Chem. Soc. 72, 5178 (1950).Google Scholar
19. Lagowski, J. J., Pure and Applied Chemistry 25, 429 (1971).Google Scholar
20. Teherani, T., Itaya, K., Bard, A. J., Nouv. J. Chim. 2, 481 (1978).Google Scholar
21. Powder Diffraction File Alphabetical Index, Inorganic Phases, edited by McClune, W. F. (JCPDS International Center for Diffraction Data, Swarthmore, PA, 1988).Google Scholar
22. Maya, L., Inorg. Chem. 26, 1459 (1987).Google Scholar
23. Cullity, B. D., Elements of X-Ray Diffraction (Addison-Wesley, Reading, PA, 1978).Google Scholar
24. Katsura, M., J. Alloys and Comps. 182, 91 (1992).Google Scholar