No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The synthesis of nanostructured multicomponent (Fe-Mo-Cr-V-C) M50 type steel has been carried out by two chemical routes: the sonochemical decomposition of organometallic precursors and the co-reduction of the respective metal halides. Both methods produce amorphous nanopowders, but the co-reduction method requires an additional heat treatment in vacuum at 700 °C to remove the by-product LiCl. In this paper we describe the synthetic methods and the characterization of the powders by XRD and SEM-EDAX. The powders exhibit a composition very close to that of M50 steel with an average grain size in the nanometer regime. In both cases the powders have been compacted in a vacuum hot press after they were heat treated in hydrogen. The characterization of the compacted specimens by XRD and SEM-EDAX is also discussed. The TEM characterization is presented for the sonochemically produced powders and compacts. A similar characterization of the co-reduced powders and the compacts is in progress. The consolidated specimens are homogeneous and dense, with an average grain size of ∼30 nm. Their hardness is higher as compared with that of the conventional M50 alloy.