Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:09:52.678Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Magnetic Iron Oxide Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Lingyan Wang
Affiliation:
Department of Chemistry, State University of New York (SUNY) at Binghamton, Binghamton, New York 13902.
Jin Luo
Affiliation:
Department of Chemistry, State University of New York (SUNY) at Binghamton, Binghamton, New York 13902.
Mathew M. Maye
Affiliation:
Department of Chemistry, State University of New York (SUNY) at Binghamton, Binghamton, New York 13902.
Quan Fan
Affiliation:
Department of Chemistry, State University of New York (SUNY) at Binghamton, Binghamton, New York 13902.
Qiang Rendeng
Affiliation:
Department of Chemistry, State University of New York (SUNY) at Binghamton, Binghamton, New York 13902.
Jian Q. Wang
Affiliation:
Department of Physics, SUNY at Binghamton;
Mark H. Engelhard
Affiliation:
Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352;
Chongmin Wang
Affiliation:
Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352;
Yuehe Lin
Affiliation:
Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352;
Eric I. Altman
Affiliation:
Department of Chemical Engineering, Yale University, New Haven, CT 06520
Chuan-Jian Zhong*
Affiliation:
Department of Chemistry, State University of New York (SUNY) at Binghamton, Binghamton, New York 13902.
*
* To whom correspondence should be addressed ([email protected])
Get access

Abstract

This paper describes the results of an investigation of modified synthetic protocols to produce monodispersed magnetic ferrite nanoparticles, γ-Fe2O3 and Fe3O4, and their magnetic properties. The synthesis involved thermal decomposition of organometallic precursors followed by oxidation or reduction. In the synthesis of γ-Fe2O3, iron pentacarbonyl was used as the precursor and trimethylamine oxide as the oxidant. In the synthesis of Fe3O4, iron (III) acetylacetonate was reduced by 1, 2-hexadecanediol. The particle sizes ranged from 5–15 nm with high monodispersity. Results from TEM, XPS, and SQUID characterizations of these iron oxide nanoparticles are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Tartaj, P., Morales, M. D., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T. and Serna, C.J., J. Phys. D-Appl. Phys. 36, 182 (2003).Google Scholar
2. Bonnemain, B., J. Drug Targeting 6, 167, (1998).Google Scholar
3. (a) Li, P., Miser, D. E., Rabiei, S., Yadav, R. T. and Hajaligol, M. R., Appl. Catal. B-Environ. 43, 151 (2003).Google Scholar
(b) Cameron, D., Holliday, R. and Thompson, D., J. Power source 118, 298 (2003).Google Scholar
4. Boal, A.K., Das, K., Gray, M. and Rotello, V. M., Mater. Chem. 14, 2628 (2002).Google Scholar
5. Woo, K., Hong, J., Choi, S., Lee, H. W., Ahn, J. P., Kim, C. S. and Lee, S. W., Chem. Mater. 16, 2814 (2004).Google Scholar
6. Mikhaylova, M., Kim, D.K., Bobrysheva, N., Osmolowsky, M., Semenov, V., Tsakalakos, T. and Muhammed, M., Langmuir 20, 2472 (2004).Google Scholar
7. Sun, S.H., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X. and Li, G. X., J. Am. Chem. Soc 126, 273 (2004).Google Scholar
8. Shafi, K. V. P. M., Ulman, A., Yan, X. Z., Yang, N. L., Estournes, C., White, H. and Rafailovich, M., Langmuir 17, 5093 (2001).Google Scholar
9. Wilhelm, C., Gazeau, F., Roger, J., Pons, J. N. and Bacri, J. C., Langmuir 18, 8148 (2002).Google Scholar
10. Teng, X. W. and Yang, H., J. Mater. Chem. 14, 774 (2004).Google Scholar
11. Hyeon, T., Lee, S. S., Park, J., Chung, Y. and Na, H. B., J. Am. Chem. Soc. 123, 12798 (2001).Google Scholar
12. Fried, T., Shemer, G. and Markovich, G., Adv. Mater. 13, 1158 (2001).Google Scholar
13. (a) Kataby, G., Koltypin, Y., Ulman, A., Felner, I. and Gedanken, A., Appl. Surf. Sci. 201, 191 (2002).Google Scholar
(b) Lin, J., Zhou, W. L., Kumbhar, A., Wiemann, J., Fang, J. Y., Carpenter, E. E. and O'Connor, C. J., J. Solid State Chem. 159, 26 (2001).Google Scholar
(c) Ravel, B., Carpenter, E. E. and Harris, V. G., J. Appl. Phys. 91, 8195 (2002).Google Scholar
14. Chen, J. P., Sorensen, C.M., Klabunde, K. J. and Hadjipanayis, G. C., J. Appl. Phys. 76, 6316 (1994).Google Scholar
15. Wang, J. Q. and Xiao, G., Phys. Rev. B 49, 3982 (1994).Google Scholar
16. Chantrel, R. W. and Wohlfarth, E. P., J. Magn. Mater. 40, 1 (1983).Google Scholar