Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T03:49:50.315Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Inorganic Clathrate-II Materials

Published online by Cambridge University Press:  01 February 2011

Matt Beekman
Affiliation:
[email protected], University of South Florida, Department of Physics, 4204 East Fowler Ave., Tampa, FL, 33620, United States
George S. Nolas
Affiliation:
[email protected], University of South Florida, Department of Physics, 4204 East Fowler Ave., Tampa, FL, 33620, United States
Get access

Abstract

Preliminary results from an investigation into the synthesis and characterization of silicon and germanium type II clathrates are reported. A series of NaxSi136 (0 < x < 24) clathrates was synthesized and characterized by powder X-ray diffraction and Rietveld analysis. The NaxSi136 lattice parameters are observed to first decrease, then increase with increasing Na content, indicating a non-monotonic structural response to Na filling. New type II Ge clathrate compositions Cs8Na16MyGe136-y (M = Cu, In) utilizing framework substitution are reported. Electrical transport measurements on a Cu substituted specimen indicate framework substitution modifies the transport properties of these materials. The potential type II clathrate phases possess for thermoelectric applications is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nolas, G.S., Slack, G.A., and Schujman, S.B., in Semiconductors and Semimetals, edited by Tritt, T.M. (Academic Press, San Diego, 2000) vol. 69, pg. 255.Google Scholar
2. Nolas, G.S., in Chemistry, Physics, and Materials Science of Thermoelectric Materials: Beyond Bismith Telluride, edited by Kanatzidis, M.G., Manhanti, S.D., and Hogan, T.P. (Kluwer Academic/Plenum Publishers, New York, 2003) pp. 107120.Google Scholar
3. Nolas, G.S., in Thermoelectrics Handbook: Macro to Nano, edited by Rowe, D.M. (CRC Press, Boca Raton, 2006) p. 33–1; P. Rogl, ibid, p. 32–1.Google Scholar
4. Beekman, M. and Nolas, G.S., J. Mater. Chem. DOI: 10.1039/b706808e (2008).Google Scholar
5. Slack, G.A., Mater. Res. Soc. Symp. Proc. 478, 47 (1997).Google Scholar
6. Nolas, G.S., Cohn, J.L., Slack, G.A., and Schujman, S.B., Appl. Phys. Lett. 73, 178 (1998).Google Scholar
7. Saramat, A., Svensson, G., Palmqvist, A.E.C., Stiewe, C., Mueller, E., Platzek, D., Williams, S.G.K., Rowe, D.M., Bryan, J.D., and Stucky, G.D., J. Appl. Phys. 99, 23708 (2006).Google Scholar
8. Kim, J.-H., Okamoto, N.L., Kishida, K., Tanaka, K., and Inui, H., Acta Mater. 54, 2057 (2006).Google Scholar
9. Nolas, G.S., Vanderveer, D.G., Wilkinson, A.P., and Cohn, J.L., J. Appl. Phys. 91, 8970 (2002).Google Scholar
10. Nolas, G.S., Kendziora, C.A., Gryko, J., Dong, J.J., Myles, C.W., Poddar, A., and Sankey, O.F., J. Appl. Phys. 92, 7225 (2002).Google Scholar
11. Myles, C.W., Dong, J.J., and Sankey, O.F., Phys. Stat. Sol. (b) 239, 26 (2003).Google Scholar
12. Biswas, K. and Myles, C.W., Phys. Rev. B 75, 245205 (2007).Google Scholar
13. Nolas, G.S., Beekman, M., Gryko, J., Lamberton, G.A. Jr, Tritt, T.M., and McMillan, P.F., Appl. Phys. Lett. 82, 910 (2003).Google Scholar
14. Beekman, M. and Nolas, G.S., Physica B 383, 111 (2006).Google Scholar
15. Larson, A. C. and Dreele, R. B. Von, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86748, 2004.Google Scholar
16. Reny, E., Gravereau, P., Cros, C., and Pouchard, M., J. Mater. Chem. 8, 2839 (1998).Google Scholar
17. Ramachandran, G.K., Dong, J.J., Diefenbacher, J., Gryko, J., Marzke, R.F., Sankey, O.F., and McMillan, P.F., J. Solid State Chem. 145, 716 (1999).Google Scholar
18. Conesa, J.C., Tablero, C., and Wahnon, P., J. Chem. Phys. 120, 6142 (2004).Google Scholar
19. Hall, R.N. and Racette, J.H., J. Appl. Phys. 35, 379 (1964).Google Scholar
20. Biswas, K. and Myles, C.W., Phys. Rev. B 75, 245205 (2007).Google Scholar
21. Beekman, M., Wong-Ng, W., Kaduk, J.A., Shapiro, A., and Nolas, G.S., J. Solid State Chem. 180, 1076 (2007).Google Scholar
22. Bobev, S., Meyers, J. Jr, Fritsch, V., Yamasaki, Y., Proc. Int. Conf. Thermoelectrics 24, 48 (2006).Google Scholar