No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
High quality InN nanowires have been synthesized in a horizontal quartz-tube furnace through direct reaction between metallic Indium and Ammonia using Nitrogen as the carrier gas. Thin film of Au on SiO2/Si substrate has been used as the catalyst layer, facilitating vapor-liquid-solid growth of the nanostructures. The nanowires were grown at a very fast rate of up to 30 μm/hr. Smooth and horizontal nanowire growth was achieved only with nanoscale catalyst patterns, while large area catalyst coverage resulted in uncontrolled and three-dimensional growth. The InN nanowires, which were usually covered with a thin shell layer of In2O3, grew along [110] direction, with overall diameters 20 - 60 nm and lengths 5 - 15 μm. The synthesized nanowires bent spontaneously or got deflected from other nanowires at multiples of 30 degrees forming nano-networks. The catalyst particles for the NWs were found mostly at the sides of the NW apex which helped them to bend spontaneously or get deflected from other NWs at angles which were multiples of 30 degrees. The NW based FETs with a back-gated configuration have already been investigated. The gate-bias dependent mobility of the NWs ranged from 55 cm2/Vs to 220 cm2/Vs, and their carrier concentration was ∼1018 cm−3.