Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T16:37:03.858Z Has data issue: false hasContentIssue false

Synthesis and Characterization of BaZr0.8Y0.2O3 Protonic Conductor for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)

Published online by Cambridge University Press:  26 February 2011

Alessandra D'Epifanio
Affiliation:
[email protected], University of Rome Tor Vergata, Dept. of Chemical Science and Technology, Via della Ricerca Scientifica,1, 00133 Rome, Rome, N/A, Italy, +390672594737, +390672594328
Emiliana Fabbri
Affiliation:
[email protected], University of Rome Tor Vergata, Dept. of Chemical Science and Technology, Via della Ricerca Scientifica,1, Rome, 00133, Italy
Elisabetta Di Bartolomeo
Affiliation:
[email protected], University of Rome Tor Vergata, Dept. of Chemical Science and Technology, Via della Ricerca Scientifica,1, Rome, 00133, Italy
Silvia Licoccia
Affiliation:
[email protected], University of Rome Tor Vergata, Dept. of Chemical Science and Technology, Via della Ricerca Scientifica,1, Rome, 00133, Italy
Enrico Traversa
Affiliation:
[email protected], University of Rome Tor Vergata, Dept. of Chemical Science and Technology, Via della Ricerca Scientifica,1, Rome, 00133, Italy
Get access

Abstract

Barium zirconate BaZr0.8Y0.2O3-δ, to be used as protonic conductor under hydrogen containing atmosphere in intermediate temperature (500-700°C) solid oxide fuel cells (IT-SOFCs) was prepared using a sol-gel technique to produce materials with controlled chemical structure and microstructural properties. Several synthetic procedures were investigated, dissolving the metal cations in two solvents (water and ethylene glycol) and using different molar ratios of citric acid with respect to the total metal content. A single phase was obtained at temperature as low as 1100°C. To verify the chemical stability, all the sintered oxides were exposed to CO2 and the phase composition of the resulting specimens was investigated using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Fuel cell polarization curves on symmetric Pt/BZY20/Pt cells of different thickness were measured at intermediate temperatures (500-700°C).

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iwahara, H., Uchida, H., Morimoto, K., J. Appl. Electrochem. 137, 462 (1990).Google Scholar
2. Bonanos, N., Ellis, B., Mahmood, M. N., Solid State Ionics 44, 305 (1991).Google Scholar
3. Hibino, T., Hashimoto, A., Suzuki, M., Sano, M., J. Electrochem. Soc. 149, A1503 (2002).Google Scholar
4. Iwahara, H., Uchida, H., Ono, K., Ogaki, K., J. Electrochem. Soc. 135, 529 (1988).Google Scholar
5. Munch, W., Stifert, D., Kreuer, K. D., Maier, J., Solid State Ionics 97, 39 (1997).Google Scholar
6. Iwahara, H., Esaka, T., Uchida, H., Maeda, N., Solid State Ionics 3–4, 359 (1981).Google Scholar
7. Ryu, K. Hyun, Haile, S.M., Solid State Ionics 125, 355 (1999).Google Scholar
8. Katahira, K., Kohchi, Y., Shimura, T., Iwahara, H., Solid State Ionics 138, 91 (2000).Google Scholar
9. Kreuer, K.D., Adams, St., Munch, W., Fuchs, A., Klock, U., Maier, J., Solid State Ionics 145, 295 (2001).Google Scholar
10. Schober, T., Bohn, H.G., Solid State Ionics 127, 351 (2000).Google Scholar
11. Magrez, A., Schober, T., Solid State Ionics 175, 585 (2004).Google Scholar
12. Boschini, B., Roberts, B., Rulmont, A., Cloots, R., J. European Ceram. Soc. 23, 3035 (2003).Google Scholar
13. Snijkers, F.M.M., Buekenhouldt, A., Cooymans, J., Luyten, J.J., Scripta Mater. 50, 655 (2004).Google Scholar
14. Babilo, P., Haile, S. M., J. Am. Ceram. Soc. 88 [9], 2362 (2005).Google Scholar
15. Taniguchi, N., Hatoh, K., Niikura, J., Gamou, T., Iwahara, H., Solid State Ionics 53, 998 (1992).Google Scholar
16. Ma, G., Shimura, T., Iwahara, H., Solid State Ionics 120, 51 (1999).Google Scholar
17. Schober, T., Bohn, H.G., Solid State Ionics 127, 351 (2000).Google Scholar
18. Taherparvar, H., Kilner, J.A., Baker, R.T., Sahibzada, M., Solid State Ionics 162–163, 297 (2003).Google Scholar