Published online by Cambridge University Press: 10 February 2011
Antimony-doped tin oxide (ATO) nanophase materials containing up to 43 mole% antimony have been synthesized by a wet-chemistry method. These ATO materials exhibit enhanced electrochromic properties for display devices. The performance of the display devices is related to the nanostructure of the synthesized ATO materials. The average sizes of the ATO nanocrystallites depend on dopant level, annealing conditions, and synthesis processes. Antimony inhibits the growth of tin dioxide nanocrystallites during annealing at moderate temperatures. At higher annealing temperatures, however, antimony segregates to form separate oxide phases and ATO nanocrystallites grow significantly. A systematic study of the structural evolution of the synthesized ATO materials is presented and the relationship between the nanostructure of the ATO materials and the enhanced performance of the corresponding electrochromic devices is discussed.