Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T09:11:54.045Z Has data issue: false hasContentIssue false

Synthesis and Aggregation of BiBi2S3 Nanocapsules

Published online by Cambridge University Press:  15 February 2011

Marina Vega-González
Affiliation:
Institute of Physics, The National University of Mexico (UNAM), A.P. 20-364, 01000 México D. F. Mexico.
Xim Bokhimi
Affiliation:
Institute of Physics, The National University of Mexico (UNAM), A.P. 20-364, 01000 México D. F. Mexico.
Manuel Aguilar-Franco
Affiliation:
Institute of Physics, The National University of Mexico (UNAM), A.P. 20-364, 01000 México D. F. Mexico.
Antonio Morales
Affiliation:
Institute of Physics, The National University of Mexico (UNAM), A.P. 20-364, 01000 México D. F. Mexico.
Amado F. García-Ruiz
Affiliation:
UPIICSA-COFAA, The National Polytechnic Institute (IPN), Té 950 Esq. Resina, 08400, México, D. F. Mexico.
Get access

Abstract

Nanocapsules of Bi2S3 with diameters between 5 and 10 nm and shells with an amorphous atomic distribution were synthesized at room temperature, with bismuth nitrate and thiourea as precursors. Aging the solution for several days a black powder precipitated made of a mixture of one amorphous phase and crystalline Bi2S3. When two capsules interacted between each other, the capsule regions in contact crystallized into bismuth sulfide, which explains the origin of the crystalline phase observed in the X-ray diffraction pattern. At this temperature, aggregation of the small nanocapsules also gave rise to necklaces of capsules, which eventually gave rise to nanotubes; these necklaces ordered forming bundles parallel to their largest dimension. When the solution was annealed at temperatures lower than 100 °C, aggregation gave rise to capsules as large as 1 μm in diameter, and tubes with similar diameters; in this case aggregation occurred between small and large nanocapsules. Because of the monomers aggregating had an external spherical symmetry and the low annealing temperatures, which were not high enough to produce sintering, all capsules and tubes formed during aggregation had porous walls, making these materials interesting for many applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lokhande, C. D., Sankapal, B. R., Mane, R. S., Pathan, H. M., Muller, M., Giersig, M., Tributsch, H., and Ganeshan, V., Appl. Surf. Sci. 187, 108 (2002).Google Scholar
2. Sirimanne, P. M., Takahashi, K., and Sonoyama, N., Sakata, T., Solar Energy Mater. & Solar Cells 73, 175 (2002).Google Scholar
3. Peter, L. M., Wijayantha, K. G. U., Riley, D. J., and Waggett, J. P., J. Phys. Chem. B107, 8378 (2003).Google Scholar
4. Pawar, S. H., Bhosale, P. N., Uplane, M. D., and Tanhankar, S., Thin Solid Films 110, 165 (1983).Google Scholar
5. Nayak, B. B., Acharya, H. N., Mitra, G. B., and Mathur, B. K., Thin Solid Films 105, 17 (1983).Google Scholar
6. Rincón, M. E., Hu, H., Martínez, G., Suárez, R., and Bañuelos, J. G., Solar Energy Mater. & Solar Cells 77, 239 (2003).Google Scholar
7. Boudjouk, P., Remington, M. P. Jr , Grier, D. J., Jarabek, D. R., and McCarthy, G. J., Inorg. Chem. 37, 3538 (1998).Google Scholar
8. Suarez, R.,Nair, P. K., and Kamat, P. V., Langmuir 14, 3236 (1998).Google Scholar
9. Larson, R., Greania, V. A., Tonjes, W. C., Liu, R., Mahanti, S. D., and Olson, C. G., Phys. Rev. B65, 085108 (2002).Google Scholar
10. Peter, L. M., J. Electroanal. Chem. 98, 49 (1979).Google Scholar
11. Riley, D. J., Waggett, J. P., and Wijayantha, K. G. U., J. Materials Chem. 14, 704 (2004).Google Scholar
12. O'Reagan, B., and Gratzel, M., Nature 353, 737 (1991).Google Scholar
13. Arivuoli, D., Gnanam, F. D., and Ramasamy, P., J. Mater. Science Lett. 7, 711 (1988).Google Scholar
14. Chen, Y., Kou, H., Jiang, J., and Su, Y., Mater. Chem. and Phys. 82, 1 (2003).Google Scholar
15. Zhou, S., Li, J., Ke, W., and Lu, S., Matter Lett. 57, 2602 (2003).Google Scholar
16. Variano, B. F., Hwang, D. M., Sandroff, C. J., Wiltzius, P., Jing, T. W., and Ong, N. P., J. Phys. Chem. 91, 6455 (1987).Google Scholar
17. Shao, M. W., Mo, M. S., Cui, Y., Chen, G., and Qian, Y. T., J. Crystal Growth 233, 799 (2001).Google Scholar
18. Zhang, H., Ji, Y., Ma, X., Xu, J., and Yang, D., Nanotechnology 14, 974 (2003).Google Scholar
19. Hofmann, W., Z. Kristall. 86, 225 (1933).Google Scholar
20. Li, Q., Shao, M., Wu, J., Yu, G., and Qian, Y., Inorg. Chem. Comm. 5, 933 (2002).Google Scholar
21. Zhang, Z., Pinnavaia, T. J., J. Amer. Chem. Soc. 124, 12294 (2002).Google Scholar
22. Neves, M. C., Liz-Marzan, L. M., and Trindade, T., J. Colloid Interface Sci. 264, 391 (2003).Google Scholar